Lecture 1, 8/26
(vectors,
Euclidean Geometry)
Lecture 2, 8/26
(areas,
cross products)
Lecture 3, 9/04
(lines and planes)
Lecture 4, 9/09
(problems in dynamics)
Lecture 5, 9/11
(geometry of curves I)
Lecture 6, 9/16
(geometry of curves II)
Lecture 7, 9/18
(matrices)
Lecture 8, 9/23
(linear systems)
Lecture 9, 9/25
(determinants)
Lecture 10, 9/30
(geometry of functions,
limits)
Lecture 11, 10/02
(gradients, tangent planes)
Lecture 12, 10/07
(vector fields, div, curl)
Lecture 13, 10/09
(review)
MIDTERM EXAM, 10/16
Lecture 15, 10/21
(Taylor theorem, optimization)
Lecture 16, 10/23
(Lagrange multipliers)
Lecture 17, 10/28
(line integral)
Lecture 18, 10/30
(Irrotational vector fields)
Lecture 19, 11/04
(Double integral)
Lecture 20, 11/06
(Volume of bodies, polar)
Lecture 21, 11/11
(Green's thm,
isoperimetric)
Lecture 22, 11/13
(Surface area and integral)
Lecture 23, 11/18
(Flux of a vector field)
Lecture 24, 11/20
(Stokes formula)
Lecture 25, 11/25
(Triple integral, I)
Lecture 26, 12/02
(Triple integral, II)
Lecture 27, 12/04
(Jacobian determinant)
Lecture 28, 12/09
(Divergence Theorem, I)
Lecture 29, 12/09
(Divergence Theorem, II)
FINAL EXAM, 12/16