MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024

Homework 4

(1) Drop the condition that ¢ + @ = @ + ¥ in the vector space axioms, but assume that the additive inverse
satisfies X + —X = —X + X = 0. Prove that this condition can be recovered.

Solution: ¥+ v+ W+ W= (14 1)(7+ W) = 0+ @ + 0+ @.

(2) True or False. For each of the following statements, decide if the statement is always true or if

the statement is not always true . Give reasons for your answers. If a statement is false, give a
counterexample.

(a)

(b)

. . Let A be an m X n matrix, suppose AT = b has a solution for all b € R™, then the solution to

Alyj = d when it exists, is unique.

Solution: True. If A7 = b has a solution for all b € R™, then C(A) = R™. It follows that rank(A) =
m. Since rank(A) = rank(A?) and A® € M(n,m), we must have that null(A!) = m — rank(A?) = 0.

Therefore, any solution to Al = d, if it exists, must be unique.

m Suppose A is an m x n matrix, A and A’ have the same nullity.
Solution: False. Let

10
A—[(l) (1) 8}, then A'= [0 1
0 0

As they are both in echelon form, we see that null(A) = 1, but null(A4?) = 0

c) When a matrix A is non-singular, its transpose A’ can be singular.

Solution: False. Recall that A is non-singular if rref(A) = I,,. In particular, A is a square matrix.
Since n = rank(A4) = rank(A!) we must have that null(A') = n — rank(A') = 0, so rref(A') has n

pivots and must be I,,.

. F| Assume that A4, B € M(5,7) both have rank 3 and b € R5, then {# € R” | AZ = b and BZ = 0}

is always non-empty.

Solution: False. Let

10 00000 1
01 00O0O0O0 = 1
A=B=10 01 0 0 0 O and b= |1
000O0O0O0O 0
000O0O0O0O 0

Then, if AZ = l;, the we must have z; = 29 = z3 = 1. However, if Z is such that BZ = 0, then

21 = x93 = x3 = 0. Therefore, {Z € R7 | AZ = b and BZ = 0} is empty.

e) IanndBaretwonxnmatrices, if AB=0then A=0or B=0.

Solution: False. Consider

01 0 1|0 1 0 0
AB[O 0}, then AB[O O] [0 0}[0 0}

f) If A and B are two n x n matrices, then (AB)? = A?B2.

Solution: False. Consider

0 1 1 1
A[l 0} and B [0 1]
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Then,

N R R |

(2) Suppose A € M(m,n), B € M(n,q) and the columns of B are linearly dependent, then
columns of AB must be linearly dependent.
Solution: True. Let 7, ..., 7; be the columns of B and assume we have a nontrivial relation ¢17; +
CdegUy = 0. Then, applying A and using linearity, we have that ¢; A% + - - - + cqATy = A0 = 0. By
definition, the columns of AB are A%;, so they are therefore also linearly dependent.

(h) Suppose A and B are matrices such that AB is defined and the rows of B are linearly
dependent, then rows of AB must be linearly dependent.
Solution: False. Let

-1 0
A—[l ! O] and B=| 1 1 .Then,AB—[O 1}.

01 1 N 10
(3) Let I,, be the n x n identity matrix. Suppose A, B are n X n and A is invertible, show

det(I,, + AB) = det(I, + BA).

Solution:

det(I, + AB) = det(AA™! + AB) = det(A) det(A™! + B) = det(A™" + B) det(A) = det(I,, + BA).

(4) Generalized Cross Product
Given vectors 91, ... U,—1 € R™, suppose there is a vectors T = (x1,x2,...,x,) € R" satisfying the property
that for all @ € R",

T = det [171 Uy o+ Up_1 U_f] . (1)
(a) Show that
xTr; = det [171 172 s Un—l éz] (2)
Solution:
€ by computing z. éz by property det [1_),1 1_},2 o Un_l éz]

(b) Show that & as defined in Equation (2) satisfies the property in Equation (1).

Solution: Given the vectors 1, . ..7,—1, we simply define & by Equation (2). To see that it satisfies
the desired property, observe that
n n
T-w= T;w; = sz‘ det [171 172 s Un,1 éi]
i=1 i=1

Since det is multilinear, we have

n
f'w:Zwidet [171 272 "'7771—1 éz}
=1
=det [771 Uy =+ Up_q Z?:l wiéi}

—det [171 Ug -+ Up_i w]
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(¢) Show that Z as defined in Equation (2) is the unique vector in R” satisfying the property in Equation
(1). Hint: Let i be another vector satisfying the property that for all W € R™,
i - w = det [171 Uo Up—1 w]
and show x; = y; for all 1.

Solution: Let i be a vector satisfying the property that for all @ € R",

—

g-w:det [171 172 '-Un,1 w]

In particular, let @ = é;, then
yi=y-é=det [0y o ---Up1 &) =

So, applying this for all ¢ gives ¢ = Z.

Show that & is perpendicular to span{uy, ...

of v1,...,U,_1 € R,

,Un—1}. We therefore call Z the generalized cross product

Solution: It suffices to show that for all i,we have ¥ - ¥; = 0. Indeed,

f'ﬁi:det[i_f] Uy v+ Up_q Ei}ie—p;—c.cio for 1<i<n-—1.
-2 1 0
(5) Let A= |1 =2 1 . Compute AL
0 1
Solution: One can computes rref([A | I]) by multiplying on the left by E;’s as follows:
100 100
% 1 0 =0 1 0
1 -2 1|01 0 ——= |0 -3 1L 10 —2—=
0 1 —-2|0 0 1 0 1 =20 01
1
-3 0 0
B=| 0 =% 0 ) .
0—31%10 401—%—§—%0—>
4 2 ’ ) 3
0 —303 3 1 0 0 -1 -3 -3
100 1 40
Ea=|0 1 2 Bs=[0 1 0
3 1 1 3 1 1
00 1 (b =2 Op=3 0 0 00 1 [} O O0I=% =5 —y
—>010—?—1—§—>010—?—1—g
0 0 1|-3 -5 —3 00 1|3 —5 —3
Thus
1 3 2 1
A*l_fZ 2 4 2
1 2 3

(6) Consider a metal rod of unit length and uniform thermal conductivity. Suppose the temperature 7" at the
ends is held fixed 7(0) = a and T'(b), and subject to a time independent source f(x). This gives the ODE

RYA

) = f(x)v T(O) = a, T(l) =",

0<x<1.

For example, if f(x) = 0, then T'(z) = a(1—x)+bx. For a more complicated heat source f(z), we introduce a
numerical approximation technique called the finite difference method. We discretize the problem by giving
a numerical approximation to the solution at a finite set of locations

x():O’xl:N’...,a:i:

*
N’

7$N:1



for some large integer N. Set T; =T (%) and f; = f (%) Let h = % and approximate

*T, T =21, + Tiy
T

Using this approximation, derive a linear system to determine T := (Th, T, ..., Tn—1), e.g. express A T=0b
for an appropriate matrix A and vector b (depending on f;, boundary conditions a, b and spacing h).

Solution: This gives a linear system of equations
Tip1 — 2T; + Ti—1 = h2f;

Additionally, we have the boundary conditions Ty = a and T = b. We must determine the (n—1) x (n—1)
matrix A and vector b. Note that Ty = a and Ty = b, so there are N — 1 linear equations:

Ty — 2Ty +a=hf1, b—2TN_1+Tn-2=h*fy_1,
Tiv1 — 2T+ Ty = h?f; for i=2,...,N —2.

Moving a and b to the other sides of the first and last equation gives:

21 0 0 -~ 0] S -
1 =2 1 0 - 0 Ty h;;jf“
0 1 -2 1 -+ 0 . Ty . 2
A = . s T f— 3 s b e E
. : ,
0 0 1 -2 1 Tn_1 th}; fN—i )
0 0 1 -2 LN
[—2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
(7) (a) Let A,, be the determinant of n x n matrix
o - 0o 1 -2 1
0 - 0 0 1 -2
Prove that A, — A1 = —(Ap—1 + A,—2) and evaluate A,,.
Solution: Note that
Ay = -2, Ay = 3, A3 =—4

Laplace expand along the first column, we have
An - *2An71 - A7172u An + Anfl - *(Anfl + A7172>
Ay + A =1, Az + Ay = —1, A, + AN = (*1)”

n—1,

A1 = —2, and suppose A,,_1 = (—1)""'n, it follows by induction that

Ap=—Ap_1+ (=1)" = (=1)™n + (=1)" = (=1)"(n + 1).

1+ 22 T 0 R ]
x 1+ 2? T 0
(b) Let A, be the determinant of n x n matrix 0 x 1+ 22 x
0 0 x 1+ 22

Prove that A, — A,_1 = 22(An_1 — Ay_2) and evaluate A,
Solution: Use Laplace expansion along first column, and then first row:

A, =1+2)An 1 —2°Ay_s



Set f(n) = A, — A,_1. Then, f(n) = 22f(n — 1). We can compute that
f@) =142 42" - (1+2%) =2"
So, it should be easy to see that f(n) = 22". Then,
A, = f(n)+ An—1)
= f() + f(n— 1)+ A(n —2)
= ) = ) e F2) 4 A
Iy |
2202

x?2—1



