
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 4

(1) Drop the condition that v⃗ + w⃗ = w⃗ + v⃗ in the vector space axioms, but assume that the additive inverse

satisfies X⃗ +−X⃗ = −X⃗ + X⃗ = 0. Prove that this condition can be recovered.

Solution: v⃗ + v⃗ + w⃗ + w⃗ = (1 + 1)(v⃗ + w⃗) = v⃗ + w⃗ + v⃗ + w⃗.

(2) True or False. For each of the following statements, decide if the statement is always true T or if

the statement is not always true F . Give reasons for your answers. If a statement is false, give a
counterexample.

(a) T F Let A be an m× n matrix, suppose Ax⃗ = b⃗ has a solution for all b⃗ ∈ Rm, then the solution to

Aty⃗ = d⃗, when it exists, is unique.

Solution: True. If Ax⃗ = b⃗ has a solution for all b⃗ ∈ Rm, then C(A) = Rm. It follows that rank(A) =
m. Since rank(A) = rank(At) and At ∈ M(n,m), we must have that null(At) = m − rank(At) = 0.

Therefore, any solution to Aty⃗ = d⃗, if it exists, must be unique.

(b) T F Suppose A is an m× n matrix, A and At have the same nullity.

Solution: False. Let

A =

[
1 0 0
0 1 0

]
, then At =

1 0
0 1
0 0

 .

As they are both in echelon form, we see that null(A) = 1, but null(At) = 0.

(c) T F When a matrix A is non-singular, its transpose At can be singular.

Solution: False. Recall that A is non-singular if rref(A) = In. In particular, A is a square matrix.
Since n = rank(A) = rank(At) we must have that null(At) = n − rank(At) = 0, so rref(At) has n
pivots and must be In.

(d) T F Assume that A,B ∈ M(5, 7) both have rank 3 and b⃗ ∈ R5, then {x⃗ ∈ R7 | Ax⃗ = b⃗ and Bx⃗ = 0⃗}
is always non-empty.

Solution: False. Let

A = B =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 and b⃗ =


1
1
1
0
0


Then, if Ax⃗ = b⃗, the we must have x1 = x2 = x3 = 1. However, if x⃗ is such that Bx⃗ = 0⃗, then

x1 = x2 = x3 = 0. Therefore, {x⃗ ∈ R7 | Ax⃗ = b⃗ and Bx⃗ = 0⃗} is empty.

(e) T F If A and B are two n× n matrices, if AB = 0 then A = 0 or B = 0.

Solution: False. Consider

A = B =

[
0 1
0 0

]
, then AB =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
.

(f) T F If A and B are two n× n matrices, then (AB)2 = A2B2.

Solution: False. Consider

A =

[
0 1
1 0

]
and B =

[
1 1
0 1

]
1
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Then,

(AB)2 =

[
0 1
1 1

]2
=

[
1 1
1 2

]
, while A2B2 =

[
1 0
0 1

] [
1 2
0 1

]
=

[
1 2
0 1

]
.

(g) T F Suppose A ∈ M(m,n), B ∈ M(n, q) and the columns of B are linearly dependent, then
columns of AB must be linearly dependent.

Solution: True. Let v⃗1, . . . , v⃗q be the columns of B and assume we have a nontrivial relation c1v⃗1 +

· · ·+ cqv⃗q = 0⃗. Then, applying A and using linearity, we have that c1Av⃗1 + · · ·+ cqAv⃗q = A0⃗ = 0⃗. By
definition, the columns of AB are Av⃗i, so they are therefore also linearly dependent.

(h) T F Suppose A and B are matrices such that AB is defined and the rows of B are linearly
dependent, then rows of AB must be linearly dependent.

Solution: False. Let

A =

[
1 1 0
0 1 1

]
and B =

−1 0
1 1
0 −1

 . Then, AB =

[
0 1
1 0

]
.

(3) Let In be the n× n identity matrix. Suppose A,B are n× n and A is invertible, show

det(In +AB) = det(In +BA).

Solution:

det(In +AB) = det(AA−1 +AB) = det(A) det(A−1 +B) = det(A−1 +B) det(A) = det(In +BA).

(4) Generalized Cross Product
Given vectors v⃗1, . . . v⃗n−1 ∈ Rn, suppose there is a vectors x⃗ = (x1, x2, . . . , xn) ∈ Rn satisfying the property
that for all w⃗ ∈ Rn,

x⃗ · w⃗ = det
[
v⃗1 v⃗2 · · · v⃗n−1 w⃗

]
. (1)

(a) Show that

xi = det
[
v⃗1 v⃗2 · · · v⃗n−1 êi

]
(2)

Solution:

xi
by computing
========== x⃗ · êi

by property
========= det

[
v⃗1 v⃗2 · · · v⃗n−1 êi

]
(b) Show that x⃗ as defined in Equation (2) satisfies the property in Equation (1).

Solution: Given the vectors v⃗1, . . . v⃗n−1, we simply define x⃗ by Equation (2). To see that it satisfies
the desired property, observe that

x⃗ · w⃗ =
n∑

i=1

xiwi =

n∑
i=1

wi det
[
v⃗1 v⃗2 · · · v⃗n−1 êi

]
Since det is multilinear, we have

x⃗ · w⃗ =

n∑
i=1

wi det
[
v⃗1 v⃗2 · · · v⃗n−1 êi

]
=det

[
v⃗1 v⃗2 · · · v⃗n−1

∑n
i=1wiêi

]
=det

[
v⃗1 v⃗2 · · · v⃗n−1 w⃗

]
.
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(c) Show that x⃗ as defined in Equation (2) is the unique vector in Rn satisfying the property in Equation
(1). Hint: Let y⃗ be another vector satisfying the property that for all w⃗ ∈ Rn,

y⃗ · w⃗ = det
[
v⃗1 v⃗2 · · · v⃗n−1 w⃗

]
and show xi = yi for all i.

Solution: Let y⃗ be a vector satisfying the property that for all w⃗ ∈ Rn,

y⃗ · w⃗ = det
[
v⃗1 v⃗2 · · · v⃗n−1 w⃗

]
In particular, let w⃗ = êi, then

yi = y⃗ · êi = det
[
v⃗1 v⃗2 · · · v⃗n−1 êi

]
= xi

So, applying this for all i gives y⃗ = x⃗.
(d) Show that x⃗ is perpendicular to span{v⃗1, . . . , v⃗n−1}. We therefore call x⃗ the generalized cross product

of v⃗1, . . . , v⃗n−1 ∈ Rn.

Solution: It suffices to show that for all i,we have x⃗ · v⃗i = 0. Indeed,

x⃗ · v⃗i = det
[
v⃗1 v⃗2 · · · v⃗n−1 v⃗i

] rep. col.
======= 0 for 1 ≤ i ≤ n− 1.

(5) Let A =

−2 1 0
1 −2 1
0 1 −2

. Compute A−1.

Solution: One can computes rref([A | I]) by multiplying on the left by Ei’s as follows:

−2 1 0 1 0 0
1 −2 1 0 1 0
0 1 −2 0 0 1


E1=


1 0 0
1
2 1 0
0 0 1


−−−−−−−−−−−→

−2 1 0 1 0 0
0 −3

2 1 1
2 1 0

0 1 −2 0 0 1


E2=


1 0 0
0 1 0
0 2

3 1


−−−−−−−−−−−→

−2 1 0 1 0 0
0 −3

2 1 1
2 1 0

0 0 −4
3

1
3

2
3 1


E3=


−1

2 0 0
0 −2

3 0
0 0 −3

4


−−−−−−−−−−−−−−−→

1 −1
2 0 −1

2 0 0
0 1 −2

3 −1
3 −2

3 0
0 0 1 −1

4 −1
2 −3

4

 →

E4=


1 0 0
0 1 2

3
0 0 1


−−−−−−−−−−−→

1 −1
2 0 −1

2 0 0
0 1 0 −1

2 −1 −1
2

0 0 1 −1
4 −1

2 −3
4


E5=


1 1

2 0
0 1 0
0 0 1


−−−−−−−−−−−→

1 0 0 −3
4 −1

2 −1
4

0 1 0 −1
2 −1 −1

2
0 0 1 −1

4 −1
2 −3

4


Thus

A−1 = −1

4

3 2 1
2 4 2
1 2 3

 .

(6) Consider a metal rod of unit length and uniform thermal conductivity. Suppose the temperature T at the
ends is held fixed T (0) = a and T (b), and subject to a time independent source f(x). This gives the ODE

d2T

dx2
= f(x), T (0) = a, T (1) = b, 0 ≤ x ≤ 1.

For example, if f(x) = 0, then T (x) = a(1−x)+bx. For a more complicated heat source f(x), we introduce a
numerical approximation technique called the finite difference method. We discretize the problem by giving
a numerical approximation to the solution at a finite set of locations

x0 = 0, x1 =
1

N
, · · · , xi =

i

N
, · · · , xN = 1
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for some large integer N . Set Ti = T
(

i
N

)
and fi = f

(
i
N

)
Let h = 1

N and approximate

d2T

dx2
(xi) ≃

Ti+1 − 2Ti + Ti−1

h2
.

Using this approximation, derive a linear system to determine T⃗ := (T1, T2, . . . , TN−1), e.g. express A T⃗ = b⃗

for an appropriate matrix A and vector b⃗ (depending on fi, boundary conditions a, b and spacing h).

Solution: This gives a linear system of equations

Ti+1 − 2Ti + Ti−1 = h2fi

Additionally, we have the boundary conditions T0 = a and TN = b. We must determine the (n−1)×(n−1)

matrix A and vector b⃗. Note that T0 = a and TN = b, so there are N − 1 linear equations:

T2 − 2T1 + a = h2f1, b− 2TN−1 + TN−2 = h2fN−1,

Ti+1 − 2Ti + Ti−1 = h2fi for i = 2, . . . , N − 2.

Moving a and b to the other sides of the first and last equation gives:

A =



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .

0 · · · 0 1 −2 1
0 · · · 0 0 1 −2


, T⃗ =


T1

T2
...

TN−1

 , b⃗ =


h2f1 − a
h2f2
...

h2fN−2

h2fN−1 − b

 .

(7) (a) Let ∆n be the determinant of n× n matrix



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .

0 · · · 0 1 −2 1
0 · · · 0 0 1 −2


.

Prove that ∆n −∆n−1 = −(∆n−1 +∆n−2) and evaluate ∆n.

Solution: Note that

∆1 = −2, ∆2 = 3, ∆3 = −4

Laplace expand along the first column, we have

∆n = −2∆n−1 −∆n−2, ∆n +∆n−1 = −(∆n−1 +∆n−2)

∆2 +∆1 = 1, ∆3 +∆2 = −1, ∆n +∆n−1 = (−1)n

∆1 = −2, and suppose ∆n−1 = (−1)n−1n, it follows by induction that

∆n = −∆n−1 + (−1)n = (−1)nn+ (−1)n = (−1)n(n+ 1).

(b) Let ∆n be the determinant of n× n matrix


1 + x2 x 0 · · ·

x 1 + x2 x 0 · · ·
0 x 1 + x2 x · · ·
0 0 x 1 + x2 · · ·
...

...
...

. . . · · ·

.
Prove that ∆n −∆n−1 = x2(∆n−1 −∆n−2) and evaluate ∆n.

Solution: Use Laplace expansion along first column, and then first row:

∆n = (1 + x2)∆n−1 − x2∆n−2
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Set f(n) = ∆n −∆n−1. Then, f(n) = x2f(n− 1). We can compute that

f(2) = 1 + x2 + x4 − (1 + x2) = x4

So, it should be easy to see that f(n) = x2n. Then,

∆n = f(n) + ∆(n− 1)

= f(n) + f(n− 1) + ∆(n− 2)

= · · · = f(n) + f(n− 1) + · · ·+ f(2) + ∆1

= x2n + · · ·+ x2 + 1

=
x2n+2 − 1

x2 − 1
.


