
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 6

(1) Set r⃗(x, y, z) = (x, y, z), and r =
√
x2 + y2 + z2 = ∥r⃗∥.

(a) Show that ∇ · (rnr⃗) = (n+ 3)rn. In particular, ∇ · (r⃗/r3) = 0.

∂

∂x
xrn =

∂

∂x
x(x2 + y2 + z2)n/2 = rn +

n

2
x · (2x) · (x2 + y2 + z2)n/2−1 = rn + nx2rn−2

∇ · (rnr⃗) = ∂

∂x
xrn +

∂

∂y
yrn +

∂

∂z
zrn = 3rn + nrn

When n = −3, ∇ · (rnr⃗) = (−3 + 3)rn = 0.

(b) Show that ∇× (rnr⃗) = 0⃗.

∂

∂z
yrn − ∂

∂y
zrn = yzrn−2 − zyrn−2 = 0

The other terms ∂
∂zxr

n − ∂
∂xzr

n, and ∂
∂xyr

n − ∂
∂yxr

n are similarly 0.

(2) The partial differential equation for a smooth function f(x, t)

∂2f

∂t2
= c2

∂2f

∂x2

models the displacement of a 1-dimensional vibrating string from its equilibrium position
with wave velocity c. Set u = x+ ct and v = x− ct so that (x, t) =

(
u+v
2 , u−v

2c

)
. Define

F (u, v) = f(x, t) = f

(
u+ v

2
,
u− v

2c

)
.

Show that
∂2F

∂u∂v
= 0.

Deduce that F (u, v) = g(u) + h(v) for some differentiable functions g and h over any
rectangle in the uv-plane.

Fv = fxxv + fttv = fx
1

2
− ft

1

2c

Fvu =
1

2
(fxxxu + fxttu)−

1

2c
(ftxxu + ftttu)

=
1

2

(
fxx

1

2
+ fxt

1

2c

)
− 1

2c

(
ftx

1

2
+ ftt

1

2c

)
=

1

4
(fxx −

1

c2
ftt) = 0

Fvu = 0 implies that Fv is independent of u, hence it is a function of v alone. Let∫
Fvdv = h(v), and the constant of integration can be an arbitrary function of u. Fuv =

Fvu. Fuv = 0 implies that
∫
Fudu = g(u) with a function of v as its integration constant.

F (u, v) = g(u) + h(v)

Therefore, over a suitable region, F (u, v) = f(x, t) = g(x+ct)+h(x−ct) for some smooth
functions g and h. The general solution to the wave equation is the superposition of two
traveling waves, one moving to the right and one to the left, both with speed c.

(3) Classify the critical points of f(x, y) = sin(xy).

∇f(x, y) = ⟨y cos(xy), x cos(xy)⟩
Critical points occur at (0, 0) or on curves where xy = π

2 + kπ, where k is any integer.

H(f)(x, y) =

[
−y2 sin(xy) cos(xy)− xy sin(xy)

cos(xy)− xy sin(xy) −x2 sin(xy)

]
1
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H(f)(0, 0) =

[
0 1
1 0

]
, D(f)(0, 0) = −1 < 0

So (0, 0) is a saddle. Along curves where xy = π
2 + 2kπ,

H(f)(x, y) =

[
−y2 −xy
−xy −x2

]
, D(f) = 0

Along curves where xy = π
2 + (2k + 1)π,

H(f)(x, y) =

[
y2 xy
xy x2

]
, D(f) = 0

Note that sin(t) is a local max when t = π
2 + 2kπ, so in the vicinity of points (x, y)

where xy = π
2 + 2kπ, sin(xy) is a local max. Similarly, sin(xy) is a local min when

xy = π
2 + (2k + 1)π.

(4) Calculate 1.982.01. This of this value as z = xy with x = 1.98 and z = 2.01. Is the value
of z more sensitive to small changes in x or in y?

f(x, y) = xy = ey lnx, fx(x, y) = xy
y

x
, fy(x, y) = xy(lnx)

df = fxdx+ fydy

x0 = y0 = 2, fx(2, 2) = 4, fy(2, 2) = 4 ln 2 = 2.8

df = f(1.98, 2.01)− f(2, 2) ≃ 4 ∗ (−0.02) + 2.8 ∗ 0.01 = −0.08 + 0.028 = −0.052

L(x, y) = f(2, 2) + fx(2, 2)(x− 2) + fy(2, 2)(y − 2) = f(2, 2) + df = 3.948

1.982.01 = 3.9473 ≃ 3.948

f(2 + ∆x, 2)− f(2, 2) ≃ 4∆x

f(2, 2 + ∆y)− f(2, 2) ≃ 4(ln 2)∆y = 2.8∆y

So z is more sensitive to change in x than in y.

(5) Find the quadratic Taylor approximation for f(x, y) = sin(x2 + y) + y near P = (0, π).

fx = 2x cos(x2 + y), fx(P ) = 0, fy = cos(x2 + y) + 1, fy(P ) = 0

fxx = 2 cos(x2 + y)− 4x2 sin(x2 + y), fxy = fyx = −2x sin(x2 + y), fyy = − sin(x2 + y)

fxx(P ) = −2, fxy(P ) = fyx(P ) = 0, fyy(P ) = 0

Q(x, y) = f(0, π)− x2 = π − x2

(6) Consider the function f(x, y) = ln(
√

x2 + y2 + y).
• Determine the domain of f and sketch it in the xy-plane.

We can only take the logarithm of nonnegative numbers, so√
x2 + y2 + y > 0 =⇒

√
x2 + y2 > −y.

This is satisfied automatically if y > 0. If y ≤ 0, both sides of the inequality are
positive and we may safely square to get

x2 + y2 > y2 =⇒ x2 > 0 =⇒ x ̸= 0.

Therefore the domain excludes all points along the negative y-axis (the origin is
excluded as well). Note that there are no domain restrictions from the square root

term
√

x2 + y2 since x2 + y2 is never negative.
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• What is the linearization of f at (3,−4)?
We know that the linearization is

L(x, y) = fx(3,−4)(x− 3) + fy(3,−4)(y + 4) + f(3,−4).

First note f(3,−4) = ln(1) = 0. Next, we compute

fx(x, y) =
1√

x2 + y2 + y
·

(
1

2

1√
x2 + y2

· 2x

)
=

x

(
√
x2 + y2 + y)

√
x2 + y2

,

fy(x, y) =
1√

x2 + y2 + y
·

(
1

2

1√
x2 + y2

· 2x+ 1

)
=

y

(
√
x2 + y2 + y)

√
x2 + y2

+ 1.

Therefore

fx(3,−4) =
3

(5− 4) · 5
=

3

5
,

fy(3,−4) =
−4

(5− 4) · 5
+ 1 =

1

5
and hence

L(x, y) =
3

5
(x− 3) +

1

5
(y + 4).


