MAT 307 : Advanced Multivariable Calculus

Lecture 19

$$S_{N} depends ono how we broke up D into small placesa how we chose point (Kijyi) in DiBut in the lonit $h \rightarrow ch$ and
max size(Di) $\rightarrow 0$,
then $S_{N} \rightarrow S$ exists (independent of above
choices)
and represents the Ownmat of point.
We denote it as:
link interimally
small away
clements.
fin $S_{N} = \iint h(x,y) dA$$$

(2)
$$\iint C f(r,y) dA = C \iint f(r,y) dA$$
.
 P
 P

These are obvious from definition auth Finite sums. Called linearity.

(3) ID SFdA = SF, dA + SF JA () D D D D, D This property is called additivity.

Iterated integral

csysd $S_{N} = \sum_{i=1}^{M} \left(\sum_{j=1}^{n} f(x_{i}, y_{j}) \right) \text{ Area } \left(D_{ij} \right)$ $= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{1}{j} \left(\sum_{j=1}^{n} \frac{1}{j} \left(\sum_{j=1}^{n} \frac{1}{j} \right) \left(\sum_{j=1}^{n} \frac{1}{j} \right) \left(\sum_{j=1}^{n} \frac{1}{j} \right) \right)$ $\approx \int_{i=1}^{n} \int_{f(x_{i},y) dy} (x_{i+1}-x_{i})$ $\approx \int_{F(x)}^{b} F(x_{i}) dx$ 1 12 First sun over column. ther sum over gll columns. Peduce double integral to two single integrals. = $\int \int f(x,y) dy dx$.

 $\int \int f(x,y) dy dx = \int \int \int f(x,y) dx dy.$

Example: D: 1 < x < 3, 0 < y < 1 $I = \iint xy dA$ $\frac{1}{1} \frac{1}{3} = \iint xy dA$ $= \iint xy dy dx = \iint \frac{3}{2} dx = \frac{1}{4} (3^{2} - 1)$ = 2

$$\frac{Fxample}{\int \int (x^{2} - 3y^{2}) dA} = \int \int \int (x^{2} - 3y^{2}) dy dx$$

$$= \int \int \left[2x^{2} - 8 \right] dx = \frac{2}{3} x^{3} \Big|_{-1}^{3} - 8x \Big|_{-1}^{3}$$

$$= 18 + \frac{2}{3} - 24 - 8$$

$$= -14 + \frac{2}{3}.$$

These integrals are as easy or as hard as infegrals of functions of 1 variable. Sometimes easy, sometimes transendentaly hard-

Z

d Kin for, y) dx dy J frx, yid A = = h(4) C

Example

x710, y70, X+y <2 \mathbb{D} : I= Ssyda Xfy=Z $= \int_{1}^{2} \left(\int_{1}^{2-x} \chi g \, dy \right) dx$ $= \int_{-\infty}^{2} \frac{\chi(2-\chi)^{2}}{\chi(2-\chi)^{2}} d\chi$ $= \frac{1}{2} \left[\chi \left(4 - 4\chi + \chi^2 \right) d\chi \right]$ $=\frac{1}{2}\int ((4x - 4x^{2} + x^{3})dx) = \left[x^{2} - \frac{2}{3}x^{3} + \frac{x^{4}}{8}\right]_{0}^{2}$ $= 2^{2} - \frac{1}{3} \cdot 2^{3} + \frac{2^{4}}{8} = 4 - \frac{16}{3} + 2 = \dots$

D is type 2 donnin. $0 \le y \le 2$ $y \le x \le 1 + \frac{y}{2}.$

(12)

$$= \int_{0}^{2} e^{y} \int e^{y} dy dy$$

= $\int_{0}^{2} e^{y} (e^{1+\frac{y}{2}} - e^{y}) dy$
= $\int_{0}^{2} (e^{1+\frac{y}{2}} - e^{2y}) dy = e(\frac{2}{3} e^{\frac{y}{2}} |_{0}^{2} - \frac{1}{2} e^{y} |_{0}^{2})$
= $\frac{2}{3} e(e^{3} - 1) - \frac{1}{2} (e^{y} - 1)$

$$E_{x}$$

$$D: x = \int_{y}^{y = 0} \int_{y}^{y = 0}$$