
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Problems for Fun

(1) Floating inside an empty room is a perfect triangle (presumably alien technology). There is a force field so
you cannot approach it. However, you can shine a light on it and measure its shadow on any of the four
walls, or ceiling. How do you the area of the triangle from your measurements.

(2) In ancient times, one of the deadliest weapons was the sling. Indeed, David purportedly slew the Philistine
giant Goliath using only a sling. How?

Hint: let’s model a sling as follows: the hand of the slinger revolves around a circle, accelerating in such
a way so that the sling (drawn in orange) maintains the end of the sling revolves on a larger circle of
radius R. The resulting tension force, directed in towards the hand, is denoted T⃗ . Show that the speed
evolves according to the tangential acceleration and then relate the tangential acceleration to the centripetal
acceleration via the tension. You should end up with an ordinary differential equation on the speed, which
can be solved. Its behavior may come as a surprise (or not, if you’ve ever slung a sling).

(3) Let d ≥ 2 and f(x) : Rd → Rd be a vector field of unit vectors, e.g. ∥f(x)∥ = 1 for all x.
(a) For all x ∈ R2, then the principle normal vector N(x) and the curvature κ(x) of the integral curve

passing through x (e.g. a parametrized curve γ(t) : R → Rd satisfying γ′(t) = f(γ(t)) and γ(0) = x),
at the point x, are given by

κN = f · ∇f.

(b) If d = 2, prove that (up to convention on sign) that the curvature equals the curl of the vector field

κ = ∇⊥ · f.
This problem should shed some light on the geometric meaning of the curl.

(c) Use part (b) to show that the integral curves of (particle trajectories in) a potential field ∇V of
modulus one are straight lines. Give some examples of such a potential.

(4) Suppose that an airplane travels at constant airspeed (speed relative to the air through which it is moving)
travels from New York to London, and back (e.g. traverses a closed curve C ⊂ R3). Suppose that wind can
be described by a time independent, irrotational velocity field w⃗(x).
(a) Show that, if v⃗, defined along the curve C, denotes the actual velocity of the airplane (relative to the

ground), then the time it takes for the airplane to complete its tour of C is

T =

˛
C

ds

∥v⃗(C(s))∥
,

where s is the arclength parameter of C, and C(s) : [0, L] → R3 is the corresponding parametrization.
(b) Prove that the time it takes the airplane to complete its tour of C is always less when there is no wind

then when there is wind. E.g. despite the wind speeding the airplane up in some moments during its
flight path, the net effect can only slow the airplane down. Hint: Use the Cauchy-Schwarz inequality
in the form

(´
C f(s)g(s)ds

)2 ≤ ´
C |f(s)|2ds

´
C |g(s)|2ds with f = 1/g = ∥v⃗(C(s))∥1/2.
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(5) Let f : Rn → R having a single critical point and be such that the level sets Sc := {x ∈ Rn | f(x) = c}
are compact surfaces without boundary and foliate Rn as c varies. The normal to these surfaces is defined
everywhere and is given by the formula n̂ = ∇f/|∇f |. The mean curvature is defined by H := div n̂. Prove
that, for any c in the range of f , we haveˆ

Sc

Hn̂ dA = 0.

(6) Let A be an annulus and v⃗ a smooth vector field on A which is tangent to the boundaries ∂Atop and ∂Abot.
Suppose div v⃗ = 0 and that v⃗ · τ̂ |∂Atop > 0 and v⃗ · τ̂ |∂Abot

< 0, where τ̂ is the tangent pointing clockwise
around the boundaries.
(a) Prove v⃗ vanishes at at least two points of A.
(b) Give an example of a v⃗ on A having exactly two critical points.
(c) Drop the condition of div v⃗ = 0 and give an example of a v⃗ on A having exactly one critical point.

(7) Fix x0 ∈ Rn and a twice continuously differentiable function f : Rn → R. Let Bε(x0) be a ball of radius ε
about x0. Study the limit

lim
ε→0

1

ε2

 
Bε(x0)

(
f(x)− f(x0)

)
dx,

where
ffl
A fdx = 1

Vol(A)

´
A f(x)dx.

(8) Fix a scalar function f : Rd → R, and points a, b ∈ Rd. Consider the functional

A[γ] :=

ˆ
γ
fdℓ

where, for an interval I ⊂ R, γ : I → Rd is any path satisfying connecting a and b. Prove that extremal
curves satisfy

Qτ

(
∇ ln f(γ)− γ̈

∥γ̇∥2
)
= 0.

where τ is the unit tangent vector to the extremal curve, and Qτ = I − τ ⊗ τ is the orthogonal projector
onto the normal space to the curve. That is, if γ is assumed to be parametrized by arclength, we have

γ̈ = Qγ̇∇ ln f(γ).


