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MAT307 : Advanced Multivariable Calculus Lecture 25

tripleintegral : integral over doman in 3d space
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Say F(x ,YIE) is a continuous function In B.

Su:i V zo())fix ,y ,z)dv-
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for instance ,
if

Bi is a small
parallelpiped , volume is product of lengths. D
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More geneal domain
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Here we distinguished the z-direction , with

our body extruded over a domainIn xy place.

But
, we can change which axis is distinguished,

having x or y distinguished , for example
.

Sometimes inAnying the order of integration can

make an integral doable.

Ex: B : x 3,0
, %30

x+y
,
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Bz
z = x +y f(x, % ,z) = Sin(z)

Ri ~
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Instead ,
look from side :
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02yErY = [sinsdt

= j)-cost)]
[SStdv =/Sinsz3ldydeda &I

= j(1 - cos()
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three parameters,

r: distance to z axis

o: angle to X ax is

z : height

characterize our point (x, 4 , 2)

X = r10sO y :
rsing z = z

v: Nyl cost :* sint : I z = z
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Bodyof revolution
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,

03r > g(z)00 ? C

Z

t
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in cylindrical coordinateson

do

#volume of small piece

↳ ↓
dV = rdrdzdO

Take small Piecedz -
↳ &r = ro

+dr

8 <0 00 + do D
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B :
13716 00125 Ov(y(z)

())7dv =gg Cr
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ex : Volume of B :

SSS1dv =bge ~ dr dz do
= Igdzd

For example
,
if B is a ball of radius &

z+v2= R2

Bi -R-E R

o 1=zis glasse

Vol(B)=
Y- (2)dz = 112R -2)
=
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General body of revolution.

B : (r
,
z) + D fe[25) .

I sweep around
z ass

Example : Volume inside turns (doughnut
D : (r - a)2 + z2-b2

-ir B : (, zzeD, Ofto,zitE) center of mass
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VIBI = (/)dr =) (Srardzdo
= Grand

murrent
Pappus's firsttheoremwritae

= ( M
=
(D) = 2π A(D)- (Gulden Theorem

F = MD
= Clengthofcirclegeneratedby rotatingais

M(D)
X (area of cross-sectual

.

M(D) = area (D) in 2-5 place
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In words
, Pappus's first theorem says ;

The volume V of a solid of revolution is

equal to the area of the figure
whose

rotation generates the solid
,
multiplied by

the circumference htr
of the circle described

in the process
of rotation by the enter

of gravity
Y

of the figure.
assuming the figure
is a homogeneous plate

Pappus of Alexandria (end of 3rd Century AP)

was the last of the great Greek mathematicians

Sometimes this theorem is attributed to

Paul Gulden (157)-1643) ,
a Swiss Monk and amateur

mathematician , who wrote proofs oftweaker
forms)

of clappes' statemente . Stronger proofs given by Cavalieri
and Kepler.



In the case of our doughnut,

length of circle = Zita

A(D) = 4 b2

Thus

V(B) = 2 ab?↓
Note
,

we may compute directly

Crdrdz = ()(r-adrdz
+ adda

D

Frag) edgdz + a ( + b)

59+2 54

i cosOdrdt + +ab

= Nab2

Thus
, again

v(B) : Irond = 2.
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Recall now our discussion ofSurface area :

! 2

azb
, Think of the surface

03 r(g(z) as being swept
out by

Z a heavy string formed

In the shape of AB

S2

Si ds = arclengthimeasure

say d = C


