MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024

- (1) (a) Consider the Archimedean spiral $\vec{r}(t) := (x(t), y(t)) = (t \cos(t), t \sin(t))$ and the scalar function given by f(x,y) = x + 2y. Find the velocity of this parametrization. Compute the gradient of f. Find the result, q(t) = f(x(t), y(t)), of evaluating the function f along the curve. Take the derivative of q and verify that it is indeed the dot product of the velocity and the gradient evaluated on the curve.
 - (b) Find an example of a non-constant function that is constant on the Archimedean spiral.
 - (c) Find an example of a curve on which the function f(x, y) is constant.
- (2) Describe and sketch the behavior, as c varies, of the level curves f(x, y) = c for each of these functions (a) $f(x,y) = x^2 + y^2 + 1$,
 - (b) $f(x,y) = 1 x^2 y^2$,
 - (c) $f(x,y) = x^3 x$, (d) $f(x,y) = x^2 y^2$

 - (e) $f(x, y) = \max\{|x|, |y|\}.$

(3) The matrix $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ acts on a vector $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ by rotating it θ degrees counterclockwise. For example,

$$R_{\pi/2}\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}, \qquad R_{\pi/2}\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}-1\\0\end{bmatrix}.$$

- (a) Find a function whose level curves are the same as in #2(e), but rotated $\pi/4$ counterclockwise.
- (b) Sketch the level curves of $q(x,y) = x^2 y^2$ and h(x,y) = xy and explain how the two graphs of q and h are related to each other.
- (4) Find $\partial f / \partial x$, $\partial f / \partial y$ if
 - f(x, y) = xy
 - $f(x,y) = e^{xy}$
 - $f(x, y) = x \cos x \cos y$ $f(x, y) = (x^2 + y^2) \log(x^2 + y^2).$
- (5) Suppose that the temperature at the point (x, y, z) in space is $T(x, y, z) = x^2 + y^2 + z^2$. Let a particle follow the helix $\vec{r}(t) = (\cos t, \sin t, t)$ and let T(t) be its temperature at time t.
 - What is T'(t)?
 - Find an approximate value for the temperature at $t = \frac{\pi}{2} + 0.01$.
- (6) Compute the directional derivative of f in the given directions \vec{v} at the given points P.
 - $f(x, y, z) = xy^2 + y^2 z^3 + z^3 x$, P = (4, -2, 1), $\vec{v} = \frac{1}{\sqrt{14}} (\vec{i} + 3\vec{j} + 2\vec{k})$ • $f(x, y, z) = e^{-z} \sin(x) \sin(y), P = (\pi, \frac{\pi}{2}, 0), \vec{v} = \frac{12}{13}\vec{i} + \frac{3}{13}\vec{j} + \frac{4}{13}\vec{k}.$

(7) In electrostatics, the force \vec{P} of attraction between two particles of opposite charge is given by $\vec{P} = k \frac{\vec{r}}{\|\vec{r}\|^3}$ (Coulomb's law), where k is a constant and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Show that \vec{P} is the gradient of $f = -\frac{k}{\|\vec{r}\|}$.

(8) * Fix two points p_1 and p_2 in \mathbb{R}^2 . Let

$$d(\vec{x}) = \|\vec{x} - \vec{p_1}\| + \|\vec{x} - \vec{p_2}\|.$$

- (a) What are the level lines of the function d?
- (b) Show that the normal vector to a level set of d at some point p has the following property: it bisects the the angle between the vectors which point from p to p_1 and to p_2 respectively.

(Extra) * Marsden & Tromba: §2.3 #9(c), 14, 18, 22, §2.4: #18, 25; §2.5: #3(d), 7, 22; §2.6: #8(a).

^{*}Not to appear on quiz.