- (1) Consider the vector field $F(x,y) = (2x/y, (1-x^2)/y^2)$ for y > 0.
 - (a) Check that F is potential (conservative) and find a potential function
 - (b) Let C be the curve $(x-3)^5+y^2=3$, from (2,-2) to (2,2). Compute $\int_C \vec{F} \cdot d\vec{r}$.
- (2) Evaluate $\int_C F \cdot dr$ where

$$F(x,y) = \left(\frac{1}{u^2 + 1}, -\frac{2xy}{(u^2 + 1)^2} + ze^{yz}, ye^{yz} + 2z\right)$$

where C is part of the helix $r(t) = \langle \cos(t), \sin(t), t \rangle$ from (1, 0, 0) to $(1, 0, 2\pi)$.

(3) Find the integral of $f(x,y) = x^2 + y^2$ on the domain

$$D := \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ x^2 \le y \le x\}.$$

Sketch the region of integration.

(4) Find the limits of integration of $\iint_D f(x,y) dx dy$ if

$$D := \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \le 1\}$$

when D is considered first as a type I and then as a type II domain.

- (5) Sketch the region bounded by the curves $y = \log(x)$, $y = 2\log(x)$ and x = e in the first quadrant. Then express the region's area as an iterated double integral and evaluate.
- (6) Consider $\iint_D f dA = \int_0^3 \int_{-2\sqrt{1-(x/3)^2}}^{2(1-x/3)} f(x,y) dy dx$.
 - (a) Sketch the region of integration.
 - (b) Switch the order of integration in the above integral.
 - (c) Compute the integral $\iint_D f dA$ if f(x,y) = xy.
- (7) ¹ Suppose f is a continuous invertible function from [0,1] to [0,1] such that f(0) = 0, f(1) = 1 and $\int_0^1 f(x)dx = 1/6$. Let g denote the inverse function. Evaluate $\int_0^1 g(x)dx$.

¹Not to appear on the quiz.