
1 Review MAT 307 Multivariable Calculus

All the integral theorems we’ve encountered can be summarized by the following∫
M

dω =

∫
∂M

ω.

Here ω can be a function or a vector field, and d as derivative can be ordinary
derivative, grad, curl, or div. M is the object we integrate over, which could
be an interval in R, a curve, a surface or a solid; ∂M is the boundary of M
with appropriate orientation. The integral symbol can represent sum (0-d case),
ordinary integral, line integral, double integral, flux integral, or a triple integral.

• Fundamental Theorem of Calculus: 1-variable function f(x),∫ b

a

df

dx
dx = f(b)− f(a).

• Fundamental Theorem of Line integral: 2-d vector fields F⃗ (x, y) =
∇f(x, y), ∫

C

F⃗ · dr⃗ =
∫ b

a

∇(f(r⃗(t)) · r⃗′(t)dt = f(r⃗(b))− f(r⃗(a)).

• Green’s Theorem: 2-d vector fields F⃗ (x, y) = (P,Q),∫ ∫
D

(Qx − Py)dxdy =

∮
C=∂D

F⃗ · dr⃗,

• Divergence Theorem: 2-d vector fields F⃗ (x, y) = (P,Q),∫ ∫
D

Px +Qydxdy =

∮
C=∂D

F⃗ · n⃗ds.

• Fundamental Theorem of Line integral: 3-d vector fields F⃗ (x, y, z) =
∇f(x, y, z),∫

C

F⃗ · dr⃗ =
∫ b

a

∇(f(r⃗(t)) · r⃗′(t)dt = f(r⃗(b))− f(r⃗(a)).

• Stokes’ Theorem: 3-d vector fields F⃗ (x, y, z),∫ ∫
Σ

curl(F⃗ ) · dS⃗ =

∮
C=∂Σ

F⃗ · dr⃗.
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• Gauss’ (Divergence) Theorem: 3-d vector fields F⃗ (x, y, z),∫ ∫ ∫
W

div(F⃗ )dV =

∫
Σ=∂W

F⃗ · dS⃗.

curl(gradf) = 0⃗, div(curl(F⃗ )) = 0.

Taking the boundary twice of a surface and of a solid, we get empty set.
Approaches to Evaluating Line Integrals

∫
C
F⃗ · dr⃗

• directly using parametrization of curve:
C is unit circle oriented counterclockwise,

r⃗(t) = (cos t, sin t), t ∈ [0, 2π], F⃗ = (−y2, x2)∮
C

F⃗ · dr⃗ =
∫ 2π

0

(− sin2, cos2 t) · (− sin t, cos t)dt =

∫ 2π

0

sin3 t+ cos3 tdt = 0

• if F⃗ = ∇f , use FTLI:
C is the arc of a unit circle oriented counterclockwise from θ = π/4 to
θ = 3π/4.

r⃗(t) = (cos t, sin t), t ∈ [π/4, 3π/4], F⃗ = (y, x) = ∇f, f(x, y) = xy∫
C

F⃗ · dr⃗ = f(x, y)

∣∣∣∣ 1√
2
(−1,1)

1√
2
(1,1)

= −1

• if C is a closed curve in the plane, use Green’s theorem to evaluate a double
integral provided that F⃗ is defined everywhere inside C:
C is ellipse x2

4
+ y2 = 1 oriented counterclockwise.

r⃗(t) = (2 cos t, sin t), t ∈ [0, 2π], F⃗ = (−y, x)∮
C

F⃗ · dr⃗ =
∫ ∫

E

2dxdy = 2A(E) = 4π

• if C is a closed curve in the plane, F⃗ is not defined somewhere inside C
and curl(F⃗ ) = 0⃗, use Green’s theorem to evaluate a line integral along a
simpler closed C ′ that’s obtained from C without crossing the points where
F⃗ is undefined:
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C is ellipse x2

4
+ y2 = 1 oriented counterclockwise, C1 is unit circle oriented

counterclockwise.

r⃗1(t) = (cos t, sin t), t ∈ [0, 2π], F⃗ =

(
− y

x2 + y2
,

x

x2 + y2

)
∮
C

F⃗ · dr⃗ =
∮
C1

F⃗ · dr⃗ =
∫ 2π

0

(− sin t, cos t) · (− sin t, cos t)dt = 2π

• if C is a closed curve in R3, use Stokes’ theorem to evaluate a flux integral.
Always choose a simple surface for curl(F⃗ ) that fills in the curve:
C is the curve intersection of x2+y2 = 1 and z = 1 oriented counterclockwise
when viewed from above. Let D be the unit disk given by x2 + y2 ≤ 1 and
z = 1.

r⃗(t) = (cos t, sin t, 1), t ∈ [0, 2π],

F⃗ = (−y2 + ex
2

, cos(yz) + x, sin(x2 cos yz))∮
C

F⃗ ·dr⃗ =
∫ ∫

D

curlF⃗ ·dS⃗ =

∫ ∫
D

curlF⃗ ·(0, 0, 1)dS =

∫ ∫
D

(1+2y)dS = π

• if C is not closed and F⃗ not conservative, we can either

– add another curve to get a closed curve and then apply Green or
Stokes, and then subtract the line integral over the added curve:
C is half circle from (1, 0) to (−1, 0), L is line segment from (−1, 0) to
(1, 0),

r⃗(t) = (cos t, sin t), t ∈ [0, π], F⃗ = (3x2y+cos y−y, x3−x sin y)

l⃗(t) = (−1 + 2t, 0), t ∈ [0, 1]∫
C+L

F⃗ · dr⃗ =
∫ ∫

D

(Qx − Py)dS =

∫ ∫
D

1dS =
π

2∫
C

F⃗ · dr⃗ = π

2
−

∫
L

F⃗ · dr⃗ = π

2
−
∫ 1

0

(1, ⋆) · (2, 0)dt = π

2
− 2

– or find G⃗ such that F⃗ − G⃗ = ∇f for some f , where it is easier to
evaluate

∫
C
G⃗ · dr⃗ than the original line integral.

C is half circle from (1, 0) to (−1, 0),

r⃗(t) = (cos t, sin t, 1), t ∈ [0, π], F⃗ = (3x2y+cos y−y, x3−x sin y),

G⃗ = (−y, 0), F⃗ − G⃗ = ∇f, f(x, y) = x3y + x cos y
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∫
C

F⃗ · dr⃗ =
∫
C

G⃗ · dr⃗ +
∫
C

∇f · dr⃗

=

∫ π

0

(− sin t, 0) · (− sin t, cos t)dt+ f(x, y)

∣∣∣∣(−1,0)

(1,0)

=
π

2
− 2

Approaches to Evaluating Double Integrals
∫ ∫

D
fdA

• directly by changing the order of integration or change of variables formula.

• write f = Qx−Py for some 2-d vector field (P,Q) and use Green’s theorem
to compute a line integral. This is very handy when the region of integration
lies within some parametrized curve.

Approaches to Evaluating Flux Integrals
∫ ∫

Σ
F⃗ · dS⃗

• directly using appropriate parametrization of surface:
Σ is graph of f(x, y) = x2 + y2 over unit disk D given by x2 + y2 ≤ 1,

F⃗ = (yz, xz, xy).

Φ(x, y) = (x, y, x2 + y2), Φx × Φy = (−2x,−2y, 1)∫ ∫
Σ

F⃗ ·dS⃗ =

∫ ∫
D

(yz, xz, xy)·(−2x,−2y, 1)dxdy =

∫ ∫
D

xy(1−4x2−4y2)dxdy = 0

by symmetry!

• using properties of dot product:
Σ is the unit sphere x2 + y2 + z2 = 1, and F⃗ = r⃗

r3
where r = ∥r⃗∥ =

∥(x, y, z)∥ =
√

x2 + y2 + z2.∫ ∫
Σ

F⃗ ·dS⃗ =

∫ ∫
Σ

r⃗

r3
· r⃗
r
dS =

∫ ∫
Σ

r⃗ · r⃗
r4

dS =

∫ ∫
Σ

1

r2
dS =

∫ ∫
Σ

1dS = 4π

• if Σ is closed, apply divergence (Gauss’) theorem to compute a triple integral

of div(F⃗ ) as long as F⃗ is defined everywhere inside Σ:

Σ is the unit sphere x2 + y2 + z2 = 1, and F⃗ = (x2, y2, z2).∫ ∫
Σ

F⃗ · dS⃗ =

∫ ∫ ∫
W

div(F⃗ )dV = 2

∫ ∫ ∫
W

(x+ y + z)dV = 0

by symmetry!
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• if Σ is closed, and F⃗ is not defined somewhere inside Σ and div(F⃗ ) = 0,

perturb Σ to a simpler Σ′ without passing through the places where F⃗ is
undefined and compute the flux integral over Σ′ instead:
Σ is the ellipsoid x2+ y2

4
+ z2

9
= 1, and F⃗ = r⃗

r3
where r = ∥r⃗∥ = ∥(x, y, z)∥ =√

x2 + y2 + z2. div(F⃗ ) = 0. Let Σ′ be the unit sphere x2 + y2 + z2 = 1.∫ ∫
Σ

F⃗ ·dS⃗ =

∫ ∫
Σ′

r⃗

r3
· r⃗
r
dS =

∫ ∫
Σ′

r⃗ · r⃗
r4

dS =

∫ ∫
Σ′

1

r2
dS =

∫ ∫
Σ′
1dS = 4π

• if the surface Σ is not closed,

– either find G⃗ where F⃗ = curl(G⃗), and use Stokes to compute a line
integral or find the flux integral through a easier surface with the same
boundary:
Σ is the upper hemisphere x2+y2+z2 = 1 with z ≥ 0 oriented upward.

F⃗ = (−y,−z,−x) = curl(xy, yz, zx), r⃗(t) = (cos t, sin t, 0), t ∈ [0, 2π]∫ ∫
Σ

F⃗ · dS⃗ =

∫
C

G⃗ · dr⃗ =
∫ 2π

0

(cos t sin t, 0, 0) · (− sin t, cos t, 0)dt = 0

– or close off Σ with another surface Σ′ and apply divergence theorem
and subtract the flux integral over Σ′, assume the new flux integral is
easy to handle:
Σ is the upper hemisphere x2+y2+z2 = 1 with z ≥ 0 oriented upward,
F⃗ = (−y,−z,−x). Let D the unit disk x2 + y2 ≤ 1 in the xy-plane
oriented downward.∫ ∫

Σ+D

F⃗ · dS⃗ =

∫ ∫ ∫
W

div(F⃗ )dV = 0

∫ ∫
Σ

F⃗ ·dS⃗ = −
∫ ∫

D

F⃗ ·dS⃗ =

∫ ∫
D

(−y,−z,−x)·(0, 0,−1)dS =

∫ ∫
D

xdS = 0

by symmetry.

Approaches to Evaluating Triple Integrals
∫ ∫ ∫

W
fdV

• directly by changing the order of integration or change of variables formula.

• find F⃗ such that f = div(F⃗ ), f and F⃗ are defined everywhere in W , use

divergence theorem to compute a flux integral
∫ ∫

∂W
F⃗ ·dS⃗ oriented outward

instead.
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