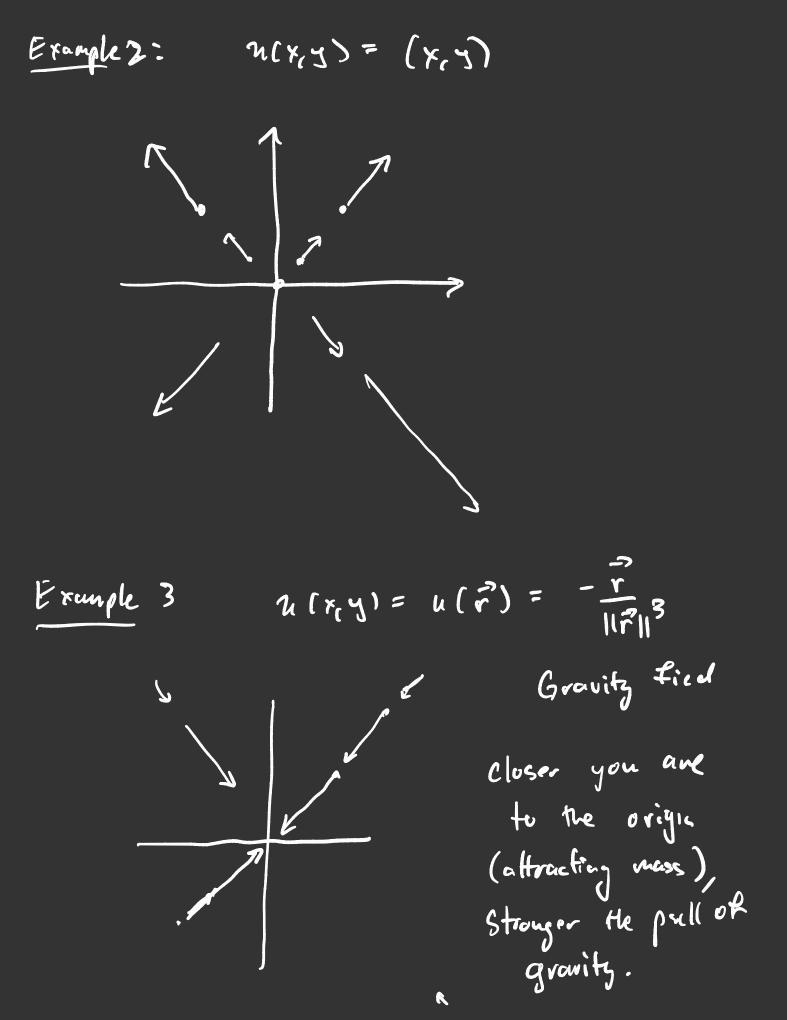
MAT 307: Advan	ced Multivari	able Calculus	Lecture 12
Vector Pi y 1 1 1 1		A field is a of the pla at every something Hene, vect grown. of of a fluid -2	piece me which point grows (wheat, corn, etc). ors are
$\overline{\mathcal{U}}(x,y) =$	$\frac{Physically}{P(x,y)i} = \frac{1}{2}$	- Q(x,y)j	: at every point greve is a velocity. Por short)
		f c.g. P = cou	ist orst
	T T T	ether pl - elect - ruagn - gravi	ijsical examples tric field efic field itutional force field



In 3D, some concept.

$$\overline{u(r)} = \overline{u}(x_{r,q},z)$$

$$= P(x_{r,q,z})\overline{i} + Q(x_{r,q,z})\overline{j} + P(x_{r,q,z})\overline{r}$$
Example:
volating solid ball
around z-axis \overline{r}
- rotates with unit
angular velocity,
e.g. in 1 second, it
thruns 1 radian.
plane containing 2 axis and \overline{r} .
The velocity of that point \overline{r} is arthogonal
to \overline{r} and orthogonal to \overline{k} .
Thus, it is proportional to $\overline{k} \times \overline{r}$
If the angular velocity is 1 , then
 $\overline{u(r)} = \overline{k} \times \overline{r}$
We can imagine a rotation around any other axis.

Consider the vector

$$\vec{w} = (w_1, w_2, w_2)$$
, a vector directed
 $\vec{w} = (w_1, w_2, w_2)$, a long axis of
votation, so if
you last darm tip,
the rotation is ccw.
The length of \vec{w}
is equal to angular
velocity of rotation.
The velocity is then
 $\vec{u}(\vec{r}) = \vec{w} \times \vec{r}$
In particular, if $\vec{w} = \vec{E} = (0,0,1)$, then
 $\vec{u}(\vec{r}) = |\vec{v} \times \vec{r}| = (-y, x, 0)$
Note it doest depend on z (as it is veloching along
 \vec{y} , \vec{n} 1

Juit x 1 - rotating disk in the plane.

Operations on vector fields

Gradient
$$\nabla$$
:
 $\nabla \mathcal{F}(x_{i}q_{i}z) = (a_{x}f_{i} a_{y}f_{i} a_{z}f) \leftarrow \text{vector field.}$
Divergence $(d_{1}u)$:
 $\vec{v}(x_{i}q_{i}z) = (P(x_{i}y_{i}z), Q(x_{i}q_{i}z), P(x_{i}y_{i}z))$
 $d_{1}v\vec{u} := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
Takes a vector field and results in a
scalar.
 $E_{x}: \vec{u}(\vec{v}) = \vec{r} = (y_{i}y_{i}z)$
 $d_{1}v\vec{u} = \frac{\partial T}{\partial x} + \frac{\partial Q}{\partial y} = \frac{\partial R}{\partial z}$
 $E_{x}: \vec{u}(\vec{v}) = \vec{r} = (y_{i}y_{i}z)$
 $e_{x}: \vec{u}(\vec{v}) = \vec{r} = (y_{i}y_{i}z)$
 $e_{x}: q_{x} + \frac{\partial Q}{\partial y} + \frac{\partial Z}{\partial z} = 3$
 $e_{x}: (solid rotation) \vec{u}(x_{i}y_{i}z) = (-y_{i}y_{i}o)$
 $P = -y$

div $\vec{h} = -\frac{\partial y}{\partial x} + \frac{\partial x}{\partial y} = 0$ e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0e = 0

5

Similarly, PCC, P, Flux through ABB, A, and & Qy drdydz Flux Through ABCD and $\approx R_2 \, dx \, dy \, dz$ In Fotal, the flux through the surface T $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = div \vec{u}$ the fluid is somehow generated inside TT (esg. from nothing, or sources) If divh 70, Recall $\vec{u} = \vec{r}$ For any T, the amount of fluid that leaves T is thid that leaves T is Nor e than amount that ealers Not in contradiction with cons law (us much earlies, is each four) (7)

Calculus Multivariable MAT 307 : Advanced ∇ (Nabla) $\nabla = (\partial_x, \partial_y, \partial_z)$ $\nabla f = (\partial_x f, \partial_y f, \partial_z f) = (f_x, f_y, f_z)$ Gradilat scelar Eugetion $\nabla f = grad f$ Vector field $\vec{n}(\vec{r}) = (P(\vec{r}), Q(\vec{r}), R(\vec{r}))$ $\nabla \cdot \vec{u} = \partial_{\chi} P(\vec{r}) + \partial_{\chi} Q(\vec{r}) + \partial_{\chi} P(\vec{r})$ Diversence $f = \frac{div \vec{u}}{dv}$ $f = \frac{div \vec{u}}{dv}$ What is $\nabla \times \vec{u} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial_x & \partial_y & \partial_z \\ P & Q & P \end{bmatrix}$ $= (\partial_{y}R - \partial_{z}Q)\tilde{i} - (\partial_{x}R - \partial_{z}P)\tilde{j} + (\partial_{y}Q - \partial_{z}P)\tilde{k}$ $= (R_y - Q_z)\vec{i} + (P_z - R_x)\vec{j} + (Q_x - P_y)\vec{k}$

 $\nabla \times \tilde{\mathcal{U}} = Cur/\tilde{\mathcal{U}}$ Velocity field of rotation of a solid body Erample: Pru Pru C ₽=(¥cy,Z) ₽= $\vec{\mathcal{U}} = \vec{\mathcal{E}} \times \vec{r} = \begin{vmatrix} \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{E}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} & \vec{\mathcal{U}} \\ \vec{\mathcal{U}} & \vec{\mathcal{U$ $Curl\vec{h} = \begin{vmatrix} i & j & k \\ \partial x & 2y & \partial z \\ -y & x & 0 \end{vmatrix} = (0, 0, 2) = \lambda \vec{k}$

(2)

It it notates around a different axis $\begin{array}{c} \vec{u}(\vec{r}) = \vec{j} \times \vec{r} \\ \vec{u}(\vec{r}) = \vec{j} \times \vec{r} \\ = \vec{j} \times \vec{j} \times \vec{k} \\ = \vec{j} \times \vec{j} \times \vec{k} \\ \times \vec{j} \times \vec{k} \end{bmatrix} = (\vec{z}, 0, -\vec{k})$ $\begin{aligned} \operatorname{Curl} \vec{y}(\vec{r}) &= \left| \begin{array}{c} i \\ \partial_{x} \\ \partial_{y} \\ \partial_{z} \end{array} \right| = \left(\begin{array}{c} 0, 2, 0 \end{array} \right) \\ = 2 \\ 0, -x \\ = 2 \\ j \end{aligned}$ Around x-aris: $Curli = 2\dot{c}$ ū(r)= ixr Axis of rotation $w = (w_r, w_r, w_z)$ in directory $w = (w_r, w_r, w_z)$ with angular votation speed $\|w\|$ Then the velocity is $Cur(\vec{u}(\vec{r}) = \lambda \vec{w} \cdot \frac{chect}{yourselves}$ ard

Consider how

$$\vec{h}(\vec{r}) = (y, x, o)$$

$$\nabla \times \vec{h} = \begin{vmatrix} \vec{i} & y & k \\ \partial_{x} & \partial_{y} & \partial_{z} \\ y & x & 0 \end{vmatrix} = (0, 0, 1-1)$$

$$y & x & 0 = (0, 0, 0)$$
This vector field has carl zero!

$$\int \int y = r$$

Consider a function
$$f(\vec{r}) = f(x,y,z)$$

and its gradient $\nabla F(\vec{r}) = (f_x, f_y, f_y)$
= grad f.

Let's find its curl.
Let's find its curl.

$$curlgrad f = \begin{bmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ \partial_x f & \partial_y f & \partial_z f \end{bmatrix}$$

 $= (2_{2})_{x}f - (2_{2})_{y}f - (2_{2})_{z}f - 2_{z}2_{x}f) \partial_{x}\partial_{y}f - 2_{y}2_{x}f)$ Since partials commute. = (o, o, o)for functions with antimog second derivatives Thus for all functions curl grad f = 0f1 7×Vf

(ເ

In particular, our previous example:
$\overline{\mathcal{U}} = (y, x, o)$
f = xy
$\partial_x f = y, \partial_y f = \pi, \partial_z f = c$
Thus $\vec{h} = \nabla f_{f}$ and $curl \vec{z} = c$ by our general result.
by our general result.
Much more interesting and important is that the reserve is true:
that the reserve is true:
Inat the If \vec{u} is a vector field with $curl \vec{u} = q$ then $\vec{u} = qrad f$ for some f .
health can this later

We'll see this later...

A connection between div and curl:

$$\vec{h} = (P_{1} Q_{1} P)$$

$$curl \vec{u} = \nabla x \vec{u}$$
What is div curl \vec{z} ?
First

$$curl \vec{u} = \left| \begin{array}{c} z & j & k \\ \partial_{x} & \partial_{y} & \partial_{z} \\ P & Q & P \end{array} \right|$$

$$= (R_{y} - \theta_{z_{1}} P_{z} - P_{x_{1}} R_{y} - P_{y})$$
div curl \vec{u} = $\partial_{p}(R_{y} - R_{z}) + \partial_{y}(P_{z} - P_{x}) + \partial_{z}(Q_{x} - P_{y})$

$$= P_{yx} - R_{yz} + P_{yz} - P_{yx} + Q_{zx} - B_{yz}$$

$$= 0!$$
Thus div curl \vec{u} Sav any vetor field \vec{z} .
Basic principles of hydrodynamics. There \vec{z}
is velocity field. If div $\vec{u} = 0$, fluid is incomposible
w= curl \vec{u} vorticity where \vec{u} is incomposible