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1 Limits

Definition 1. Let P ∈ Rn be a point, the open ball of radius ϵ > 0 about P
is the set

Bϵ(P ) = {Q ∈ Rn | ∥
−→
PQ∥ < ϵ}.

The closed ball of radius ϵ > 0 about P is the set

Bϵ(P ) = {Q ∈ Rn | ∥
−→
PQ∥ ≤ ϵ}.

Definition 2. A subset A ⊂ Rn is called open if for every P ∈ A, there is an
ϵ > 0 such that the open ball of radius ϵ about P is entirely contained in A,
i.e. Bϵ(P ) ⊂ A. We say B is closed if the complement of B, Bc, is open. A
neighborhood of P is an open set containing P .

An open set is a union of open balls. Open balls are open and closed balls are
closed.

Example 1. (0, 1), [0, 1], [0, 1) ⊂ R are respectively open, close, and neither.

Definition 3. Let B ⊂ Rn, we say P ∈ Rn is a boundary point (a.k.a. limit
point) if for every ϵ > 0, the intersection

Bϵ(P ) ∩B ̸= ∅, and Bϵ(P ) ∩Bc ̸= ∅

Boundary point of B has no neighborhood entirely in or out of B.

Example 2. 0 is a boundary point of { 1
n
| n ∈ N} ⊂ R.

Lemma 1. B ⊂ Rn is closed if and only if B contains all of its boundary points.

Proof. First assume B is closed, then Bc is open. Suppose there is a boundary
point P of B such that P is not in B, so P ∈ Bc. Since Bc is open, there is an
ϵ > 0 such that Bϵ(P ) ⊂ Bc, i.e. Bϵ(P ) ∩ B = ∅, therefore, P is not a boundary
point of B. The contradiction shows that boundary points of B must lie in B.

Conversely, assume B is not closed, i.e. Bc is not open, so there is a point
P ∈ Bc, such that for all ϵ > 0, Bϵ(P ) ∩ B ̸= ∅. This P is therefore a boundary
point of B, which is in Bc. Therefore, B does not contain all its boundary
points.

Definition 4. Let A ⊂ Rn, and let P be a point in A or a boundary point of
A. Suppose that f : A → Rm is a function, we say that f approaches L as Q
approaches P and write

lim
Q→P

f(Q) = L,

if for every ϵ > 0, we can find δ > 0 such that for all Q ∈ Bδ(P ) ∩ A, Q ̸= P ,
f(Q) ∈ Bϵ(L). We call L the limit.
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The smaller ϵ is, the smaller δ has to be.

Proposition 2. Let f and g be two functions from A to Rm. Let λ ∈ R be a
scalar. If P is a limit point of A or P ∈ A and

lim
Q→P

f(Q) = L and lim
Q→P

g(Q) = M,

then

1. limQ→P (f + g)(Q) = L+M .

2. limQ→P (λf)(Q) = λL.

3. If m = 1, then limQ→P (fg)(Q) = LM .

4. If m = 1 and M ̸= 0, then limQ→P (f/g)(Q) = L/M .

Proof. We show 1 and leave the rest to reader. Suppose ϵ > 0, since L and
M are limits, there exist δ1 and δ2, such that for 0 < ∥Q − P∥ < δ1, Q ∈ A,
∥f(Q)− L∥ < ϵ/2, and if 0 < ∥Q− P∥ < δ2, and Q ∈ A, ∥g(Q)− L∥ < ϵ/2.

Let δ = min(δ1, δ2). For all Q ∈ A where ∥Q− P∥ < δ,

∥(f+g)(Q)−L−M∥ = ∥f(Q)−L+(g(Q)−M)∥ ≤ ∥f(Q)−L∥+∥g(Q)−M∥ < ϵ,

where we used triangle inequality to obtain the first inequaility.

Definition 5. Let A ⊂ Rn, and P ∈ A. If f : A → Rm is a function, then we
say that f is continuous at P if limQ→P f(Q) exists and further more

lim
Q→P

f(Q) = f(P ).

f is said to be continuous if it is continuous at every point in A.

Intuitively, if n = 1, f is continuous when the graph of f can be plotted
without lifting your pen.

As a consequence of Proposition 2, we have

Theorem 3. Let f and g be two functions from A ⊂ Rn to Rm. Let λ ∈ R be a
scalar. Suppose f and g are both continuous at P ∈ A. then

1. f + g is continuous at P , (f + g)(P ) = f(P ) + g(P ).

2. λf is continuous at P , (λf)(P ) = λf(P ).

3. If m = 1, then fg is continous at P , (fg)(P ) = f(P )g(P ).

4. If m = 1 and g(P ) ̸= 0, then 1/g is continuous at P , (1/g)(P ) = 1/g(P ).
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5. If f(x) = (f1(x), . . . , fm(x)), then f is continuous at P if and only if each
of the real-valued functions f1, . . . fm is continuous at P .

Proposition 4. Let A ⊂ Rn and B ⊂ Rm, f : A → B and g : B → Rp. Suppose

lim
Q→P

f(Q) = L and lim
M→L

g(M) = K.

then
lim
Q→P

(g ◦ f)(Q) = K.

Hence, composition of continuous functions is continuous.

Proof. Let ϵ > 0, there exists δ > 0 such that if ∥M − L∥ < δ, and M ∈ B,
then ∥g(M) −K∥ < ϵ. Given δ > 0, there exist η > 0, such that ∥Q − P∥ < η
and Q ∈ A, ∥f(Q) − L∥ < δ. Hence, for ∥Q − P∥ < η and Q ∈ A, we have
M = f(Q) ∈ B and ∥M − L∥ < δ, so

∥(g ◦ f)(Q)−K∥ = ∥g(f(Q))−K∥ = ∥g(M)−K∥ < ϵ.

Example 3. If f : Rn → R is a polynomial function, then f is continuous.

Example 4. sin(1/x) has no limit at x = 0, so it is not continuous.

Example 5. Does the limit

lim
(x,y)→(0,0)

x2 − y2

x− y

exist? Here the domain of f is

A = {(x, y) ∈ R2 | x ̸= y}.

A is open. (0, 0) is a limit point of A. For (x, y) ∈ A,

x2 − y2

x− y
= x+ y, lim

(x,y)→(0,0)

x2 − y2

x− y
= lim

(x,y)→(0,0)
x+ y = 0.

The limit does exist since both x and y are continuous functions in R2.

Example 6. Does

lim
(x,y)→(0,0)

y

x2 + y

exist?
Let (x, y) approach (0, 0) along the line y = kx, k ̸= 1,

lim
x→0

kx

x2 + kx
= lim

x→0

k

x+ k
= 1.

Along the line y = 0,

lim
x→0

0

x2
= 0 ̸= 1.

So the limit does not exist.
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Example 7. Does

lim
(x,y)→(0,0)

x3

x2 + y2

exist?
Let (x, y) approach (0, 0) along the line y = kx,

lim
x→0

x3

x2 + k2x2
= lim

x→0

x

1 + k2
= 0.

To prove that the limit exist, we need to show that for any ϵ > 0, there exists
δ = ϵ, such that for all (x, y) ∈ Bδ(0, 0), | x3

x2+y2
|< ϵ.∣∣∣∣ x3

x2 + y2
− 0

∣∣∣∣ ≤ ∣∣∣∣x3

x2

∣∣∣∣ =| x |< δ = ϵ.

So the limit exists and is 0.
Alternatively, use the squeezing method: if g ≤ f ≤ h, g and h are both have
the same limit at P , then f has the same limit at P .

0 ≤
∣∣∣∣ x3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣x3

x2

∣∣∣∣ = |x| → 0 as (x, y) → (0, 0).

Alternatively, can use polar coordinates:

x3

x2 + y2
=

r3 cos3 θ

r2
= r cos3 θ → 0, r → 0

To show that a function f does not have a limit at P , you need to find two
paths toward P that have different limits, or a path where denominator = 0. To
show that a function f has a limit at P , you can use Proposition 2, 4, the
squeeze method, polar coordinates, or ϵ− δ argument.

Example 8. Does

lim
(x,y)→(0,0)

x2y

x4 + y2

exist?
Along lines y = kx,

x2y

x4 + y2
=

kx3

x4 + k2x2
=

kx

x2 + k2
→ 0, x → 0

But along the curve y = kx2,

x2y

x4 + y2
=

kx4

x4 + k2x4
=

k

1 + k2

Limit does not exist!
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2 Differentiability

Recall that the derivative of a function in single-variable calculus represents the
best linear approximation of the function, it is the slope of the tangent line to the
graph of the function. Intuitively, a differentiable function f : R → R is smooth.

Definition 6. Let f : R → R be a function and let a ∈ R be a real number. f
is differentiable at a, with derivative f ′(a) ∈ R, if

lim
x→a

f(x)− f(a)

x− a
= f ′(a), lim

x→a

f(x)− f(a)− f ′(a)(x− a)

x− a
= 0.

Definition 7. Let f : Rn → Rm be a function where

f(x1, · · · , xn) = (y1, · · · , ym), yi = fi(x1, · · · , xn), fi : Rn → R

Let P ∈ Rn be a point. f is differentiable at P , with derivative the m × n
matrix T if

lim
Q→P

f(Q)− f(P )− T
−→
PQ

∥
−→
PQ∥

= 0,

we write Df(P ) = T .

Along the line determined by the standard basis element êj (a column vector),

let
−→
PQ = hêj, where h > 0, then

f(Q)− f(P )− T (hêj)

∥
−→
PQ∥

=
f(Q)− f(P )− T (hêj)

h

=
f(Q)− f(P )− hT êj

h

=
f(Q)− f(P )

h
− T êj

Taking the limit of h → 0, T êj is the j-th column of T , where

T êj = lim
h→0

f(P + hêj)− f(P )

h
.

P = (p1, p2, · · · , pn), f(P + hêj) − f(P ) is a column vector whose entry in the
i-th row is given by

fi(P +hêj)− fi(P ) = fi(p1, p2, · · · , pj−1, pj +h, pj+1, · · · , pn)− fi(p1, p2, · · · , pn).

Definition 8. The partial derivatives of fi at P with respective to xj is

Tij =
∂fi
∂xj

∣∣∣∣
P

= lim
h→0

fi(P + hêj)− fi(P )

h
,

and this is also the i-th entry of T êj.
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Example 9. Let f : U ⊂ R3 → R2 be the function

f(x, y, z) = (xy + z log(xy), x sin(yz)).

U ⊂ R3 is the region where x and y are both positive. If f is differentiable at P ,
then the derivative of f at P is given by the 2× 3 matrix of partial derivatives,

Df(P ) =

[
y + z

x
x+ z

y
log(xy)

sin(yz) xz cos(yz) xy cos(yz)

]
.

Theorem 5. Let f : U → Rm be a function where U ⊂ Rn is open. If f is
differentiable at P , then f is continuous at P .

Proof. Suppose f is differentiable at P , then there is an m × n matrix T such
that Df(P ) = T .

lim
Q→P

∥f(Q)− f(P )− T
−→
PQ∥

∥
−→
PQ∥

= 0,

and a fortiori,

lim
Q→P

∥f(Q)− f(P )− T
−→
PQ∥ = 0.

∥f(Q)− f(P )∥ = ∥f(Q)− f(P )− T
−→
PQ+ T

−→
PQ∥

≤ ∥f(Q)− f(P )− T
−→
PQ∥+ ∥T

−→
PQ∥

≤ ∥f(Q)− f(P )− T
−→
PQ∥+K∥

−→
PQ∥

where if t⃗i is the i-th row of T , then K is defined as follows:

∥T
−→
PQ∥2 =

m∑
i=1

(⃗ti ·
−→
PQ)2

≤
m∑
i=1

(
∥t⃗i∥2∥

−→
PQ∥2

)
by Cauchy-Schwarz

=

(
m∑
i=1

∥t⃗i∥2
)
∥
−→
PQ∥2

= K2∥
−→
PQ∥2

As Q → P , ∥f(Q) − f(P ) − T
−→
PQ∥ + K∥

−→
PQ∥ → 0, so f(Q) → f(P ). f is

continuous at P .

Definition 9. Let f : Rn → R be a differentiable function. Then the derivative
of f at P , Df(P ) is a row vector, called the gradient of f , denoted by (∇f)|P
or grad(f),

(∇f)|P =

(
∂f

∂x1

∣∣∣∣
P

,
∂f

∂x2

∣∣∣∣
P

, · · · , ∂f

∂xn

∣∣∣∣
P

)
.

If f : Rn → Rm, each row of the derivative matrix Df(P ) is a gradient at P .
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The point (x1, x2, · · · , xn, xn+1) lies on the graph of f : Rn → R if and only if
xn+1 = f(x1, x2, · · · , xn). By definition, ∇f(P ) = Df(P ), so

f(P ) +∇f(P )(x⃗− P )

is a good linear approximation of f near P , where

x⃗ =


x1

x2
...
xn

 , P =


p1
p2
...
pn


In particular, if f is differentiable at P , then the tangent hyperplane to the
graph of f , (P, f(P )), is given by the equation

xn+1 = f(P ) +∇f(P )(x⃗− P ) or ∇f(P ) · (x⃗− P )− (xn+1 − f(P )) = 0.

The normal vector to the tangent hyperplane is given by (∇f(P ),−1), and
(P, f(P )) itself is on the tangent hyperplane.

Example 10. Find the tangent hyperplane to the the surface defined by f(x, y) =
x3 − xy + y2 at the point (2, 1).
f(2, 1) = 7, and Df(x, y) =

[
3x2 − y −x+ 2y

]
, so ∇f(2, 1) = (11, 0). The

tangent hyperplane has normal vector (11, 0,−1) and passes through the point
(2, 1, 7), so it has equation

(11, 0,−1) · (x− 2, y − 1, z − 7) = 0, 11(x− 2)− (z − 7) = 0.

Theorem 6. Let A ⊂ Rn be an open subset and f : U → Rm. If the partial
derivatives ∂fi

∂xj
exist and are continuous in an open neighborhood of P ∈ A, then

f is differentiable at P .

Proof. We will assume that m = 1, and prove the case for n = 2. The general

case is similar. Take f : R2 → R. Suppose P = (a, b), and
−→
PQ = h1ı̂+ h2ȷ̂. Let

P0 = (a, b) = P, P1 = (a+ h1, b), P2 = (a+ h1, b+ h2) = Q.

f(Q)− f(P ) = [f(P2)− f(P1)] + [f(P1)− f(P0)]

Recalled the Mean Value Theorem:

Theorem 7 (Mean Value Theorem). Let g : [a, b] → R be continuous and differ-
entiable everywhere on (a, b), then there exists c ∈ (a, b), such that

f(b)− f(a) = f ′(c)(b− a).
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So we can find Q1 somewhere on the segment P0P1 and Q2 somewhere on the
segment P1P2 such that

f(P1)− f(P0) =
∂f

∂x
(Q1)h1, f(P2)− f(P1) =

∂f

∂y
(Q2)h2.

Hence,

f(Q)− f(P ) =
∂f

∂x
(Q1)h1 +

∂f

∂y
(Q2)h2.

|f(Q)− f(P )− T
−→
PQ|

∥
−→
PQ∥

=
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1 + (∂f

∂y
(Q2)− ∂f

∂y
(P ))h2|

∥
−→
PQ∥

≤
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1|

∥
−→
PQ∥

+
|(∂f

∂y
(Q2)− ∂f

∂y
(P ))h2|

∥
−→
PQ∥

≤
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1|

|h1|
+

|(∂f
∂y
(Q2)− ∂f

∂y
(P ))h2|

|h2|

=
∣∣(∂f
∂x

(Q1)−
∂f

∂x
(P )
∣∣+∣∣∂f

∂y
(Q2)−

∂f

∂y
(P )
∣∣

As Q → P , Q1, Q2 → P . Since the partial derivatives of f are continuous, we
have

lim
Q→P

|f(Q)− f(P )− T
−→
PQ

∥
−→
PQ∥

≤ lim
Q→P

(∣∣(∂f
∂x

(Q1)−
∂f

∂x
(P ))

∣∣+∣∣∂f
∂y

(Q2)−
∂f

∂y
(P ))

∣∣) = 0.

Therefore, f is differentiable at P with derivative T .

Remark. The existence of derivative at P is much stronger than the existence of
partial derivatives at P . Just because function behave nicely along the x and
y axes directions, it doesn’t mean that the function behaves nicely along every
path approaching P . See the following example.

Example 11.

f(x, y) =

{
x2y

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

Check that f is continuous at the origin, and by definition of partial derivative,

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

we have ∂f
∂x
(0, 0) = ∂f

∂y
(0, 0) = 0, so z = 0 will be the tangent plane at the origin

if f were differentiable, i.e. Df(0, 0) = (0, 0). But along the line y = x,

lim
h→0

f(h, h)− f(0, 0)

∥(h, h)∥
=

1√
2
̸= 0.
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So even though the partial derivatives exist at (0, 0), f is not differentiable at
(0, 0). z = 0 is certainly not tangent to a path in the plane along the direction
y = x. One can check that when (x, y) ̸= (0, 0)

∂f

∂x
=

2xy

x2 + y2
− 2x3y

(x2 + y2)2
,

∂f

∂y
=

x2

x2 + y2
− 2x2y2

(x2 + y2)2
.

Neither of which has limit or is continuous at (0, 0). In fact, let

g(x, y) =

{ xy
x2+y2

(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

∂g
∂x

and ∂g
∂y

are both 0 at (0, 0). But g(x, y) is not even continuous at (0, 0), and
hence certainly not differentiable.

Definition 10. If f is differentiable and Df is continuous, then f is of class C1.

Remark. The converse to Theorem 6 is not true: f can be differentiable with
non-continuous partial derivatives. For example,

f(x, y) =

{
(x2 + y2) sin 1

(x2+y2)1/2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
, lim

(x,y)→(0,0)
f(x, y) = 0

so f is continuous.

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0
h sin

1

h
= 0.

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0
h sin

1

h
= 0.

f is differentiable at (0, 0) since

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)−
[
0 0

] [ x
y

]
√
h2 + k2

=
√
h2 + k2 sin

1

(h2 + k2)1/2
= 0.

∂f
∂x

and ∂f
∂y

exist everywhere away from the origin,

∂f

∂x
= 2x sin

1

(x2 + y2)1/2
− x

(x2 + y2)1/2
cos

1

(x2 + y2)1/2
, (x, y) ̸= (0, 0)

∂f

∂y
= 2y sin

1

(x2 + y2)1/2
− y

(x2 + y2)1/2
cos

1

(x2 + y2)1/2
, (x, y) ̸= (0, 0)

but they are not continuous at (0, 0) because their limits do not exist at (0, 0):

x

(x2 + y2)1/2
cos

1

(x2 + y2)1/2
=

r cos θ

r
cos

1

r
= cos θ cos

1

r

Let r =
√

x2 + y2, f(x, y) = g(r) = r2 sin 1
r
is differentiable at r = 0, but

g′(r) = 2r sin
1

r
− cos

1

r
has no limit at r = 0 and a fortiori is not continuous at r = 0.
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3 Review on Limits and Differentiability

1. How to show limit of a function exists at (0, 0):

• ϵ− δ argument.

• The function can be decomposed as sums, products, compositions of
functions with limits.

• Squeezing method: usually applies when denominator is a sum of even
powers, usually can reduce a function of two variables to a function of
one variable. Eg: x4y4

x6+y2
, x4y2

x8+y2
.

• Polar coordinates method: Eg: x2y
x2+y2

, x4y4

x6+y6
.

• L’ôpital’s Rule can be useful when evaluating limit of a function of a
single variable. Eg: exy−1

y
= exy−1

xy
· x = et−1

t
· x.

2. How to show limit of a function doesn’t exist at (0, 0):

• If the denominator can be made to vanish. Eg: x10y5

x5+y10
set x = −y2.

• If you can find two approaches to the origin with different limits. Usu-
ally try set x = 0, y = 0, or y = kx, to see if two different limits
can be obtained. Eg: xy

x2+y2
. Sometimes, you may need to find a more

obscure path to get a different limit. Eg: x2y
x4+y2

.

• Polar coordinates method: x2y3

x6+y6
, x2y4

x6+y6
.

3. How to show a function is continuous at (0, 0):

• The function can be decomposed as sums, products, compositions of
functions continuous at (0, 0).

• Show limit of the function exists and coincides with the value of the
function at (0, 0).

4. How to show a function is not continuous at (0, 0):

• Show limit of the function doesn’t exist.

• If the limit exists, show it’s different from the value of the function at
(0, 0).

5. How to show a function is differentiable at (0, 0):

• The function can be decomposed as sums, products, compositions of
functions differentiable at (0, 0).
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• Computer partial derivatives of the function at (0, 0)

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
, fy(0, 0) = lim

k→0

f(0, k)− f(0, 0)

k

and use it to show that

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)−∇f(0, 0) · (h, k)
∥(h, k)∥

= 0

• Compute the partial derivatives of the function fx(x, y) and fy(x, y)
show they are continuous at (0, 0).

6. How to show a function is not differentiable at (0, 0):

• Show function is not continuous at (0, 0).

• If function is continuous at (0, 0), show partial derivatives do not exist
at (0, 0). Eg: f(x, y) =

√
x2 + y2.

• If partial derivatives exist at (0, 0), show

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)−∇f(0, 0) · (h, k)
∥(h, k)∥

doesn’t exist or is not 0. Eg: f(x, y) = (xy)1/3.
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