MAT 307, Multivariable Calculus with Linear Algebra — Fall 2024
Supplemental Material

1 Limits

Definition 1. Let P € R" be a point, the open ball of radius ¢ > 0 about P
is the set

B.P)={Q e R"| |PQ| < }.
The closed ball of radius ¢ > 0 about P is the set

B.(P) = {Q e R" | | PO < ¢}

Definition 2. A subset A C R"” is called open if for every P € A, there is an
e > 0 such that the open ball of radius € about P is entirely contained in A,
i.e. B.(P) C A. We say B is closed if the complement of B, B¢, is open. A
neighborhood of P is an open set containing P.

An open set is a union of open balls. Open balls are open and closed balls are
closed.

Example 1. (0,1),[0,1],[0,1) C R are respectively open, close, and neither.

Definition 3. Let B C R", we say P € R" is a boundary point (a.k.a. limit
point) if for every € > 0, the intersection

B(P)NB #10, and  B(P)N B # )
Boundary point of B has no neighborhood entirely in or out of B.
Example 2. 0 is a boundary point of {1 | n € N} C R.
Lemma 1. B C R" is closed if and only if B contains all of its boundary points.

Proof. First assume B is closed, then B¢ is open. Suppose there is a boundary
point P of B such that P is not in B, so P € B¢. Since B¢ is open, there is an
e > 0 such that B.(P) C B¢, i.e. B.(P)N B = (), therefore, P is not a boundary
point of B. The contradiction shows that boundary points of B must lie in B.
Conversely, assume B is not closed, i.e. B¢ is not open, so there is a point
P € B¢, such that for all € > 0, B.,(P) N B # (. This P is therefore a boundary
point of B, which is in B¢. Therefore, B does not contain all its boundary
points. ]

Definition 4. Let A C R"”, and let P be a point in A or a boundary point of
A. Suppose that f : A — R™ is a function, we say that f approaches L as @)
approaches P and write

lim f(Q) = L.

if for every € > 0, we can find § > 0 such that for all @ € Bs(P)N A, Q # P,
f(Q) € Bo(L). We call L the limit.



The smaller € is, the smaller ¢ has to be.

Proposition 2. Let f and g be two functions from A to R™. Let A € R be a
scalar. If P is a limit point of A or P € A and

lim f(Q) =1L and lim ¢(Q) = M,

QP QP
then

1. limgp(f+9)(Q) =L+ M.

2. limg_,p(Af)(Q) = AL.

3. If m =1, then limg_,p(f¢)(Q) = LM.

4. Ifm =1 and M # 0, then limg_,p(f/9)(Q) = L/M.

Proof. We show 1 and leave the rest to reader. Suppose € > 0, since L and
M are limits, there exist §; and s, such that for 0 < [|[Q — P|| < §1, Q € A,
1£(Q) — L|| < €/2, and if 0 < ||Q — P|| < &5, and Q € A, ||g(Q) — L|| < /2.

Let § = min(dq,d9). For all @ € A where ||Q — PJ| < 0,

I(f+9)(Q)—L—M|| = | /(@)= L+(9(Q) = M) < [[f(Q)— Ll +lg(Q)—M]| <e,

where we used triangle inequality to obtain the first inequaility. O]

Definition 5. Let A C R", and P € A. If f : A — R™ is a function, then we
say that f is continuous at P if limg_,p f(Q)) exists and further more

lim f(Q) = f(P).

Q—P
f is said to be continuous if it is continuous at every point in A.

Intuitively, if n = 1, f is continuous when the graph of f can be plotted
without lifting your pen.
As a consequence of Proposition [, we have

Theorem 3. Let f and g be two functions from A C R™ to R™. Let A € R be a
scalar. Suppose f and g are both continuous at P € A. then

1. f+ g is continuous at P, (f + g)(P) = f(P) + g(P).
2. Nf is continuous at P, (\f)(P) = Af(P).
3. If m =1, then fg is continous at P, (fg)(P) = f(P)g(P).

4. If m=1 and g(P) # 0, then 1/g is continuous at P, (1/9)(P) =1/g(P).



5. 1If f(x) = (fi(z),..., fm(x)), then f is continuous at P if and only if each

of the real-valued functions fi,... fi, s continuous at P.

Proposition 4. Let ACR” and BCR™, f: A— B and g : B — RP. Suppose
Jm (@)=L  andlim g(M) =K.

then
(g0 N(Q) =K.

Hence, composition of continuous functions is continuous.

Proof. Let € > 0, there exists 6 > 0 such that if |M — L| < §, and M € B,
then ||g(M) — K|| < e. Given ¢ > 0, there exist n > 0, such that [|Q — P|| < n
and Q € A, ||f(Q) — L|| < d. Hence, for ||Q — P|| < nand Q € A, we have
M = f(Q) € Band |M — L| <9, so

I(g o Q) — Kl = [lg(f(Q)) = K| = [lg(M) — K| <e.

lim
Q—P

Example 3. If f: R” — R is a polynomial function, then f is continuous.
Example 4. sin(1/z) has no limit at = 0, so it is not continuous.

Example 5. Does the limit
2 _ .2
lim i
(z,9)—(0,0) T —Y

exist? Here the domain of f is

A={(z,y) eR* [z #y}.
A is open. (0,0) is a limit point of A. For (z,y) € A,
2 .2 2 .2
Ty =z +Y, im =Y —  tim x+y=0.
T — y (Izy)*)(ovo) T — y (Izy)*)(ovo)

The limit does exist since both = and y are continuous functions in R2.

Example 6. Does

lim i
(2.9)—(0,0) 22 + Yy
exist?
Let (z,y) approach (0,0) along the line y = kxz, k # 1,

kx . k

im = lim =1.
=02+ kxr a=0x+k

Along the line y = 0,
lim & =0 £1.

x—0 xQ
So the limit does not exist.



Example 7. Does
3
lim ———
(9)—(0,0) 2% + Y
exist?
Let (x,y) approach (0,0) along the line y = kz,

3 x

e P

To prove that the limit exist, we need to show that for any € > 0, there exists
d = ¢, such that for all (z,y) € Bs(0,0), | % |< e
23

3
2

'E

So the limit exists and is 0.
Alternatively, use the squeezing method: if g < f < h, g and h are both have
the same limit at P, then f has the same limit at P.

3

0< = |z| = 0 as (z,y) — (0,0).

’ 3

x2 + 92 22

Alternatively, can use polar coordinates:
3 r3 cos® 6

_ 3
NI =rcos’ 0 — 0, r—0

To show that a function f does not have a limit at P, you need to find two
paths toward P that have different limits, or a path where denominator = 0. To
show that a function f has a limit at P, you can use Proposition 2, 4, the
squeeze method, polar coordinates, or € — § argument.

Example 8. Does
2

lm
(z.y)—=(0,0) T° + Y
exist?
Along lines y = kx,

%y ka3 kx 50 50
= = s
x4 + y2 x4 + k22 72 + k2 )
But along the curve y = ka2,
%y kat k

x4—|—y2_x4+k2x4_1+k2

Limit does not exist!



2 Differentiability

Recall that the derivative of a function in single-variable calculus represents the
best linear approximation of the function, it is the slope of the tangent line to the
graph of the function. Intuitively, a differentiable function f : R — R is smooth.

Definition 6. Let f : R — R be a function and let a € R be a real number. f
is differentiable at a, with derivative f'(a) € R, if

g F@ = @) 1) = f @) = fa)e =)

T—a Tr—a r—a T — a

Definition 7. Let f : R" — R™ be a function where

f(l'la"'7$n):(y17“'aym)a yi:fi(xly'”axn)a szn_)R

Let P € R” be a point. f is differentiable at P, with derivative the m x n
matrix 7T if

=0.

o @ J(P) -TPG _
Q=P PO ’

we write Df(P) =T.

Along the line determined by the standard basis element é; (a column vector),
let PQ) = hé;, where h > 0, then

f(Q) — F(P)=T(hée)) _ f(Q) — [(P) —T(he;)
PG| h

= ] Te

Taking the limit of A — 0, T'¢; is the j-th column of T', where
P e.) — f(P
Te — pig L P+ 18) = F(P)

7 w50 h

P = (p1,pa,-+ ,pn), f(P+ héj) — f(P) is a column vector whose entry in the
i-th row is given by

fl(P+hé]) - fz(P) = fi(ppr» Ly Pi-1,Dy + hapj-i-l: e apn) - fi(p17p27 e apn)
Definition 8. The partial derivatives of f; at P with respective to z; is

p |y BUPERE) — £(P)
0xj|p  h—0 h

and this is also the i-th entry of T'¢;.



Example 9. Let f: U C R?* — R? be the function

fx,y,2) = (xy + zlog(zy), vsin(yz)).

U C R3 is the region where 2 and y are both positive. If f is differentiable at P,
then the derivative of f at P is given by the 2 x 3 matrix of partial derivatives,

pp(py=| Vi wrg o loaly) ]

sin(yz) xzcos(yz) xycos(yz)

Theorem 5. Let f : U — R™ be a function where U C R"™ is open. If [ is
differentiable at P, then f is continuous at P.

Proof. Suppose f is differentiable at P, then there is an m x n matrix 7" such

that Df(P) =T.
1£(Q) )~ TPG| _
3% @m

and a fortiori,

lim [1£(Q) ) — TPQ|| = 0.

1£@Q) = f(P)| = |I£(Q)— f(P)—TPQ+TPQ|
< |£(Q) - f(P) = TPQ| + ||TPQ)
< 1£Q) )= TPQ| + K| PG|

where if Z; is the i-th row of T, then K is defined as follows:

Hﬁﬁwzjz QY

< Z (Ht:HQH@W) by Cauchy-Schwarz

=1

=(Zﬂmﬂmﬁw
- K| PO
As Q — P, |If(Q) — f(P) — TPQ| + K|[PQ|| — 0, so f(Q) — f(P). fis

continuous at P. O

Definition 9. Let f : R” — R be a differentiable function. Then the derivative
of fat P, Df(P) is a row vector, called the gradient of f, denoted by (Vf)|p

or grad(f), o of o
o= (55 g 5 ).

If f:R™— R™, each row of the derlvatlve matrix Df(P) is a gradient at P.
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The point (z1, g, -+ , Ty, Tye1) lies on the graph of f : R™ — R if and only if
Tp1 = f(x1, 29, -+ ,x,). By definition, Vf(P) = Df(P), so

f(P)+V[(P)(T - P)

is a good linear approximation of f near P, where

T 4!
- L2 D2
T = , P = _
Tn Pn

In particular, if f is differentiable at P, then the tangent hyperplane to the
graph of f, (P, f(P)), is given by the equation

Tnpr = f(P)+Vf(P)T=P)  or  Vf(P)-(Z—P) = (tny— f(P)) =0

The normal vector to the tangent hyperplane is given by (Vf(P),—1), and
(P, f(P)) itself is on the tangent hyperplane.

Example 10. Find the tangent hyperplane to the the surface defined by f(z,y) =
23 — 2y + 92 at the point (2,1).

f(2,1) =7, and Df(z,y) = [ 32° —y —x+2y ], so Vf(2,1) = (11,0). The
tangent hyperplane has normal vector (11,0, —1) and passes through the point
(2,1,7), so it has equation

(1,0,-1) - (z =2,y —1,2—=T7) =0, 1(x—=2)—(2=T7)=0.

Theorem 6. Let A C R" be an open subset and f : U — R™. If the partial

derivatives % exist and are continuous in an open neighborhood of P € A, then

f s diﬁer@ntijable at P.

Proof. We will assume that m = 1, and prove the case for n = 2. The general
case is similar. Take f : R? — R. Suppose P = (a,b), and F@ = h12 + hgj. Let

P():(Cl,b)zp, Plz(a+h1,b>, PQZ(a+h1,b+h2>:Q.
Q) = f(P) = [f(Po) = (PO + [f(P1) = F(Fo)]

Recalled the Mean Value Theorem:

Theorem 7 (Mean Value Theorem). Let g : [a,b] — R be continuous and differ-
entiable everywhere on (a,b), then there exists ¢ € (a,b), such that

f(b) = fla) = f'(e)(b - a).



So we can find )7 somewhere on the segment FyP; and ()5 somewhere on the
segment Py P, such that

f(P) = f(R) = %(Ql)hla f(R) = f(P) = %(QQ}%
Hence, 5 5
7@ = £(P) = 5H@uk + 5T @k

F(Q — f(P)~TPQ| _ |(5H(Q1) = F(P)h + (51(Q2) = F(P))ha
1PQl 1P
(GE@0) — SE(P)I|  (5(Q2) — G (Pl

<

- uﬁﬁu uﬁﬁu
(ZL(Q1) — L (P 1(2E(Q) — 2 (P)hyl

= ol * Tl

- [ Zqy- Ly Q2 ——5( )

As Q — P, Q1,Q2 — P. Since the partial derivatives of f are continuous, we
have

Q=P —TPG _ of y_ Of 9 p
i SIS < i (1700 = LD @0 - 5

Therefore, f is differentiable at P with derivative T O]

Remark. The existence of derivative at P is much stronger than the existence of
partial derivatives at P. Just because function behave nicely along the x and
y axes directions, it doesn’t mean that the function behaves nicely along every
path approaching P. See the following example.

Example 11.

0 (z,y) = (0,0)

Check that f is continuous at the origin, and by definition of partial derivative,

9 0,0)  ting L0 =100y, 020

h—0
we have df ~(0,0) = 8f(O 0) =0, so z = 0 will be the tangent plane at the origin
if f were dlfferentlable i.e. Df(0,0) = (0,0). But along the line y = z,

lim f(h7h) _f(0>0) -
=0 [[(h, b V2

8

f(z,y) :{ s (z,y) # (0,0)

£ 0.



So even though the partial derivatives exist at (0,0), f is not differentiable at
(0,0). z = 0 is certainly not tangent to a path in the plane along the direction
y = . One can check that when (z,y) # (0,0)

of 2wy 223y of  a? 222y?
Or  x2+y> (a2 +y?)? Oy x> +y* (224 y2)%
Neither of which has limit or is continuous at (0,0). In fact, let
e (@,y) #(0,0)
w, —_ 332“‘:1/2 I )
e ={ 5% )L
99

52 and g_g are both 0 at (0,0). But g(x,y) is not even continuous at (0,0), and
w y
hence certainly not differentiable.

Definition 10. If f is differentiable and Df is continuous, then f is of class C'.

Remark. The converse to Theorem [0 is not true: f can be differentiable with
non-continuous partial derivatives. For example,

(372 + y2> sin W (iL', y) 7é (07 O)

f(x,y)z{ 0

so f is continuous.

, lim z,y) =0
(z,y) = (0,0) <x,y>ﬁ<o,o>f ()

5z 0 = = = fimhsin g =0,
gy 0 =l T~ Jimhsing =0,

f is differentiable at (0,0) since
T

F(hk) — (0,00~ [0 0] {y] 1
i — \/h2 2 gi —
(h,kl)lg%o,m N = VI + k*sin (h2 1 k2)1/2 0

9 and g—g exist everywhere away from the origin,

Ox
af , 1 x 1
i 2 sin 1y Rt g cos (4P (z,y) # (0,0)
of : 1 y 1
- 2y sin SR e e Ccos @+ ) (z,y) # (0,0)
but they are not continuous at (0,0) because their limits do not exist at (0,0):
x 1 r cos 0 1 9
cos = cos — = cos  cos —
(22 + y2)12 (22 + y2)12 , , ,
Let r = /22 + 2, f(z,y) = g(r) =12 sin% is differentiable at r = 0, but
1
g'(r) =2rsin - — cos —
r r

has no limit at r = 0 and a fortiori is not continuous at r = 0.



3

Review on Limits and Differentiability

1. How to show limit of a function exists at (0,0):

e ¢ — § argument.

e The function can be decomposed as sums, products, compositions of
functions with limits.

e Squeezing method: usually applies when denominator is a sum of even
powers, usually can reduce a function of two variables to a function of

4 4 4,2
one variable. Eg: 545, s

:v2y $4 4

224427 26440

e [’opital’s Rule can be useful when evaluating limit of a function of a
ery—1 eV—1 et—1

single variable. Eg: = rT=5

e Polar coordinates method: Eg:

2. How to show limit of a function doesn’t exist at (0, 0):

5iyf0 set © = —y°.
e [f you can find two approaches to the origin with different limits. Usu-
ally try set x = 0, y = 0, or y = kx, to see if two different limits

can be obtained. Eg: Sometimes, you may need to find a more

e [f the denominator can be made to vanish. Eg:

2+y

obscure path to get a different limit. Eg: —%5 +y
2 3 2y4

$6+y6’ $6+y

e Polar coordinates method:

3. How to show a function is continuous at (0,0):

e The function can be decomposed as sums, products, compositions of
functions continuous at (0,0).

e Show limit of the function exists and coincides with the value of the
function at (0,0).

4. How to show a function is not continuous at (0, 0):

e Show limit of the function doesn’t exist.

e If the limit exists, show it’s different from the value of the function at

(0,0).
5. How to show a function is differentiable at (0, 0):

e The function can be decomposed as sums, products, compositions of
functions differentiable at (0, 0).
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e Computer partial derivatives of the function at (0, 0)

f2(0,0) = lim f(h,0) - f(O,())’ £,(0,0) = lim f(0,k) — £(0,0)

h—0 h k—0 k

and use it to show that

f(hv k) B f(()?O) B Vf(0,0) ) (hv k)

1m =0
(hk)—(0,0) | (h, k)|

e Compute the partial derivatives of the function f,(z,y) and f,(z,y)
show they are continuous at (0, 0).

6. How to show a function is not differentiable at (0, 0):

e Show function is not continuous at (0, 0).

e If function is continuous at (0, 0), show partial derivatives do not exist
at (0,0). Eg: f(x,y) = /22 + 3%

e If partial derivatives exist at (0,0), show

o S k) = £(0,0) — V£(0,0) - (h k)
(h,k)—(0,0) H(h’ k)”

doesn’t exist or is not 0. Eg: f(z,y) = (zy)'/3.
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