MAT 307, Multivariable Calculus with Linear Algebra – Fall 2024 Supplemental Material

1 Limits

Definition 1. Let $P \in \mathbb{R}^n$ be a point, the **open ball of radius** $\epsilon > 0$ **about** P is the set

$$B_{\epsilon}(P) = \{ Q \in \mathbb{R}^n \mid \|\overrightarrow{PQ}\| < \epsilon \}.$$

The closed ball of radius $\epsilon > 0$ about P is the set

$$\overline{B_{\epsilon}(P)} = \{ Q \in \mathbb{R}^n \mid \|\overrightarrow{PQ}\| \le \epsilon \}.$$

Definition 2. A subset $A \subset \mathbb{R}^n$ is called **open** if for every $P \in A$, there is an $\epsilon > 0$ such that the open ball of radius ϵ about P is entirely contained in A, i.e. $B_{\epsilon}(P) \subset A$. We say B is **closed** if the **complement** of B, B^c , is open. A **neighborhood** of P is an open set containing P.

An open set is a union of open balls. Open balls are open and closed balls are closed.

Example 1. $(0,1), [0,1], [0,1) \subset \mathbb{R}$ are respectively open, close, and neither.

Definition 3. Let $B \subset \mathbb{R}^n$, we say $P \in \mathbb{R}^n$ is a **boundary point** (a.k.a. **limit point**) if for every $\epsilon > 0$, the intersection

$$B_{\epsilon}(P) \cap B \neq \emptyset$$
, and $B_{\epsilon}(P) \cap B^{c} \neq \emptyset$

Boundary point of B has no neighborhood entirely in or out of B.

Example 2. 0 is a boundary point of $\{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$.

Lemma 1. $B \subset \mathbb{R}^n$ is closed if and only if B contains all of its boundary points.

Proof. First assume B is closed, then B^c is open. Suppose there is a boundary point P of B such that P is not in B, so $P \in B^c$. Since B^c is open, there is an $\epsilon > 0$ such that $B_{\epsilon}(P) \subset B^c$, i.e. $B_{\epsilon}(P) \cap B = \emptyset$, therefore, P is not a boundary point of B. The contradiction shows that boundary points of B must lie in B.

Conversely, assume B is not closed, i.e. B^c is not open, so there is a point $P \in B^c$, such that for all $\epsilon > 0$, $B_{\epsilon}(P) \cap B \neq \emptyset$. This P is therefore a boundary point of B, which is in B^c . Therefore, B does not contain all its boundary points.

Definition 4. Let $A \subset \mathbb{R}^n$, and let P be a point in A or a boundary point of A. Suppose that $f : A \to \mathbb{R}^m$ is a function, we say that f approaches L as Q approaches P and write

$$\lim_{Q \to P} f(Q) = L_{q}$$

if for every $\epsilon > 0$, we can find $\delta > 0$ such that for all $Q \in B_{\delta}(P) \cap A$, $Q \neq P$, $f(Q) \in B_{\epsilon}(L)$. We call L the **limit**.

The smaller ϵ is, the smaller δ has to be.

Proposition 2. Let f and g be two functions from A to \mathbb{R}^m . Let $\lambda \in \mathbb{R}$ be a scalar. If P is a limit point of A or $P \in A$ and

$$\lim_{Q \to P} f(Q) = L \quad and \quad \lim_{Q \to P} g(Q) = M,$$

then

- 1. $\lim_{Q \to P} (f + g)(Q) = L + M$.
- 2. $\lim_{Q \to P} (\lambda f)(Q) = \lambda L.$
- 3. If m = 1, then $\lim_{Q \to P} (fg)(Q) = LM$.
- 4. If m = 1 and $M \neq 0$, then $\lim_{Q \to P} (f/g)(Q) = L/M$.

Proof. We show 1 and leave the rest to reader. Suppose $\epsilon > 0$, since L and M are limits, there exist δ_1 and δ_2 , such that for $0 < ||Q - P|| < \delta_1$, $Q \in A$, $||f(Q) - L|| < \epsilon/2$, and if $0 < ||Q - P|| < \delta_2$, and $Q \in A$, $||g(Q) - L|| < \epsilon/2$. Let $\delta = \min(\delta, \delta)$. For all $Q \in A$ where $||Q - P|| < \delta$

Let $\delta = \min(\delta_1, \delta_2)$. For all $Q \in A$ where $||Q - P|| < \delta$,

$$\|(f+g)(Q) - L - M\| = \|f(Q) - L + (g(Q) - M)\| \le \|f(Q) - L\| + \|g(Q) - M\| < \epsilon,$$

where we used triangle inequality to obtain the first inequality.

Definition 5. Let $A \subset \mathbb{R}^n$, and $P \in A$. If $f : A \to \mathbb{R}^m$ is a function, then we say that f is **continuous** at P if $\lim_{Q \to P} f(Q)$ exists and further more

$$\lim_{Q \to P} f(Q) = f(P).$$

f is said to be continuous if it is continuous at every point in A.

Intuitively, if n = 1, f is continuous when the graph of f can be plotted without lifting your pen.

As a consequence of Proposition 2, we have

Theorem 3. Let f and g be two functions from $A \subset \mathbb{R}^n$ to \mathbb{R}^m . Let $\lambda \in \mathbb{R}$ be a scalar. Suppose f and g are both continuous at $P \in A$. then

- 1. f + g is continuous at P, (f + g)(P) = f(P) + g(P).
- 2. λf is continuous at P, $(\lambda f)(P) = \lambda f(P)$.
- 3. If m = 1, then fg is continous at P, (fg)(P) = f(P)g(P).
- 4. If m = 1 and $g(P) \neq 0$, then 1/g is continuous at P, (1/g)(P) = 1/g(P).

5. If $f(x) = (f_1(x), \ldots, f_m(x))$, then f is continuous at P if and only if each of the real-valued functions f_1, \ldots, f_m is continuous at P.

Proposition 4. Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$, $f : A \to B$ and $g : B \to \mathbb{R}^p$. Suppose

$$\lim_{Q \to P} f(Q) = L \qquad and \lim_{M \to L} g(M) = K.$$

then

$$\lim_{Q \to P} (g \circ f)(Q) = K.$$

Hence, composition of continuous functions is continuous.

Proof. Let $\epsilon > 0$, there exists $\delta > 0$ such that if $||M - L|| < \delta$, and $M \in B$, then $||g(M) - K|| < \epsilon$. Given $\delta > 0$, there exist $\eta > 0$, such that $||Q - P|| < \eta$ and $Q \in A$, $||f(Q) - L|| < \delta$. Hence, for $||Q - P|| < \eta$ and $Q \in A$, we have $M = f(Q) \in B$ and $||M - L|| < \delta$, so

$$||(g \circ f)(Q) - K|| = ||g(f(Q)) - K|| = ||g(M) - K|| < \epsilon.$$

Example 3. If $f : \mathbb{R}^n \to \mathbb{R}$ is a polynomial function, then f is continuous. **Example 4.** $\sin(1/x)$ has no limit at x = 0, so it is not continuous. **Example 5.** Does the limit

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x-y}$$

exist? Here the domain of f is

$$A = \{ (x, y) \in \mathbb{R}^2 \mid x \neq y \}.$$

A is open. (0,0) is a limit point of A. For $(x,y) \in A$,

$$\frac{x^2 - y^2}{x - y} = x + y, \qquad \lim_{(x,y) \to (0,0)} \frac{x^2 - y^2}{x - y} = \lim_{(x,y) \to (0,0)} x + y = 0.$$

The limit does exist since both x and y are continuous functions in \mathbb{R}^2 .

Example 6. Does

$$\lim_{(x,y)\to(0,0)}\frac{y}{x^2+y}$$

exist?

Let (x, y) approach (0, 0) along the line $y = kx, k \neq 1$,

$$\lim_{x \to 0} \frac{kx}{x^2 + kx} = \lim_{x \to 0} \frac{k}{x + k} = 1.$$

Along the line y = 0,

$$\lim_{x \to 0} \frac{0}{x^2} = 0 \neq 1.$$

So the limit does not exist.

Example 7. Does

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2}$$

exist?

Let (x, y) approach (0, 0) along the line y = kx,

$$\lim_{x \to 0} \frac{x^3}{x^2 + k^2 x^2} = \lim_{x \to 0} \frac{x}{1 + k^2} = 0.$$

To prove that the limit exist, we need to show that for any $\epsilon > 0$, there exists $\delta = \epsilon$, such that for all $(x, y) \in B_{\delta}(0, 0)$, $|\frac{x^3}{x^2+y^2}| < \epsilon$.

$$\left|\frac{x^3}{x^2+y^2} - 0\right| \le \left|\frac{x^3}{x^2}\right| = |x| < \delta = \epsilon.$$

So the limit exists and is 0.

Alternatively, use the **squeezing method**: if $g \leq f \leq h$, g and h are both have the same limit at P, then f has the same limit at P.

$$0 \le \left| \frac{x^3}{x^2 + y^2} \right| \le \left| \frac{x^3}{x^2} \right| = |x| \to 0 \text{ as } (x, y) \to (0, 0).$$

Alternatively, can use **polar coordinates**:

$$\frac{x^3}{x^2 + y^2} = \frac{r^3 \cos^3 \theta}{r^2} = r \cos^3 \theta \to 0, \qquad r \to 0$$

To show that a function f does not have a limit at P, you need to find two paths toward P that have different limits, or a path where denominator = 0. To show that a function f has a limit at P, you can use **Proposition 2, 4**, the squeeze method, polar coordinates, or $\epsilon - \delta$ argument.

Example 8. Does

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$

exist?

Along lines y = kx,

$$\frac{x^2y}{x^4+y^2} = \frac{kx^3}{x^4+k^2x^2} = \frac{kx}{x^2+k^2} \to 0, \qquad x \to 0$$

But along the curve $y = kx^2$,

$$\frac{x^2y}{x^4+y^2} = \frac{kx^4}{x^4+k^2x^4} = \frac{k}{1+k^2}$$

Limit does not exist!

2 Differentiability

Recall that the derivative of a function in single-variable calculus represents the best linear approximation of the function, it is the slope of the tangent line to the graph of the function. Intuitively, a differentiable function $f : \mathbb{R} \to \mathbb{R}$ is smooth.

Definition 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be a real number. f is **differentiable at** a, with derivative $f'(a) \in \mathbb{R}$, if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a), \qquad \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0.$$

Definition 7. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function where

$$f(x_1, \cdots, x_n) = (y_1, \cdots, y_m), \qquad y_i = f_i(x_1, \cdots, x_n), \qquad f_i : \mathbb{R}^n \to \mathbb{R}$$

Let $P \in \mathbb{R}^n$ be a point. f is **differentiable at** P, with derivative the $m \times n$ matrix T if

$$\lim_{Q \to P} \frac{f(Q) - f(P) - TP\dot{Q}}{\|\overrightarrow{PQ}\|} = 0,$$

we write Df(P) = T.

Along the line determined by the standard basis element \hat{e}_j (a column vector), let $\overrightarrow{PQ} = h\hat{e}_j$, where h > 0, then

$$\frac{f(Q) - f(P) - T(h\hat{e}_j)}{\|\overrightarrow{PQ}\|} = \frac{f(Q) - f(P) - T(h\hat{e}_j)}{h}$$
$$= \frac{f(Q) - f(P) - hT\hat{e}_j}{h}$$
$$= \frac{f(Q) - f(P)}{h} - T\hat{e}_j$$

Taking the limit of $h \to 0$, $T\hat{e}_j$ is the *j*-th column of *T*, where

$$T\hat{e}_j = \lim_{h \to 0} \frac{f(P + h\hat{e}_j) - f(P)}{h}.$$

 $P = (p_1, p_2, \dots, p_n), f(P + h\hat{e}_j) - f(P)$ is a column vector whose entry in the *i*-th row is given by

$$f_i(P+h\hat{e}_j) - f_i(P) = f_i(p_1, p_2, \cdots, p_{j-1}, p_j + h, p_{j+1}, \cdots, p_n) - f_i(p_1, p_2, \cdots, p_n).$$

Definition 8. The **partial derivatives** of f_i at P with respective to x_j is

$$T_{ij} = \left. \frac{\partial f_i}{\partial x_j} \right|_P = \lim_{h \to 0} \frac{f_i(P + h\hat{e}_j) - f_i(P)}{h},$$

and this is also the *i*-th entry of $T\hat{e}_j$.

Example 9. Let $f: U \subset \mathbb{R}^3 \to \mathbb{R}^2$ be the function

$$f(x, y, z) = (xy + z \log(xy), x \sin(yz)).$$

 $U \subset \mathbb{R}^3$ is the region where x and y are both positive. If f is differentiable at P, then the derivative of f at P is given by the 2×3 matrix of partial derivatives,

$$Df(P) = \left[\begin{array}{cc} y + \frac{z}{x} & x + \frac{z}{y} & \log(xy)\\ \sin(yz) & xz\cos(yz) & xy\cos(yz) \end{array}\right].$$

Theorem 5. Let $f : U \to \mathbb{R}^m$ be a function where $U \subset \mathbb{R}^n$ is open. If f is differentiable at P, then f is continuous at P.

Proof. Suppose f is differentiable at P, then there is an $m \times n$ matrix T such that Df(P) = T.

$$\lim_{Q \to P} \frac{\|f(Q) - f(P) - T\overrightarrow{PQ}\|}{\|\overrightarrow{PQ}\|} = 0,$$

and a fortiori,

$$\lim_{Q \to P} \|f(Q) - f(P) - T\overrightarrow{PQ}\| = 0.$$

$$\begin{aligned} \|f(Q) - f(P)\| &= \|f(Q) - f(P) - T\overrightarrow{PQ} + T\overrightarrow{PQ}\| \\ &\leq \|f(Q) - f(P) - T\overrightarrow{PQ}\| + \|T\overrightarrow{PQ}\| \\ &\leq \|f(Q) - f(P) - T\overrightarrow{PQ}\| + K\|\overrightarrow{PQ}\| \end{aligned}$$

where if $\vec{t_i}$ is the *i*-th row of *T*, then *K* is defined as follows:

$$\|T\overrightarrow{PQ}\|^{2} = \sum_{i=1}^{m} (\overrightarrow{t_{i}} \cdot \overrightarrow{PQ})^{2}$$

$$\leq \sum_{i=1}^{m} \left(\|\overrightarrow{t_{i}}\|^{2} \|\overrightarrow{PQ}\|^{2} \right) \text{ by Cauchy-Schwarz}$$

$$= \left(\sum_{i=1}^{m} \|\overrightarrow{t_{i}}\|^{2} \right) \|\overrightarrow{PQ}\|^{2}$$

$$= K^{2} \|\overrightarrow{PQ}\|^{2}$$

As $Q \to P$, $||f(Q) - f(P) - T\overrightarrow{PQ}|| + K||\overrightarrow{PQ}|| \to 0$, so $f(Q) \to f(P)$. f is continuous at P.

Definition 9. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then the derivative of f at P, Df(P) is a row vector, called the **gradient** of f, denoted by $(\nabla f)|_P$ or grad(f),

$$(\nabla f)|_P = \left(\frac{\partial f}{\partial x_1} \Big|_P, \frac{\partial f}{\partial x_2} \Big|_P, \cdots, \frac{\partial f}{\partial x_n} \Big|_P \right).$$

If $f : \mathbb{R}^n \to \mathbb{R}^m$, each row of the derivative matrix Df(P) is a gradient at P.

The point $(x_1, x_2, \dots, x_n, x_{n+1})$ lies on the graph of $f : \mathbb{R}^n \to \mathbb{R}$ if and only if $x_{n+1} = f(x_1, x_2, \dots, x_n)$. By definition, $\nabla f(P) = Df(P)$, so

$$f(P) + \nabla f(P)(\vec{x} - P)$$

is a good linear approximation of f near P, where

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad P = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}$$

In particular, if f is differentiable at P, then the **tangent hyperplane** to the graph of f, (P, f(P)), is given by the equation

$$x_{n+1} = f(P) + \nabla f(P)(\vec{x} - P)$$
 or $\nabla f(P) \cdot (\vec{x} - P) - (x_{n+1} - f(P)) = 0.$

The normal vector to the tangent hyperplane is given by $(\nabla f(P), -1)$, and (P, f(P)) itself is on the tangent hyperplane.

Example 10. Find the tangent hyperplane to the surface defined by $f(x, y) = x^3 - xy + y^2$ at the point (2, 1).

f(2,1) = 7, and $Df(x,y) = \begin{bmatrix} 3x^2 - y & -x + 2y \end{bmatrix}$, so $\nabla f(2,1) = (11,0)$. The tangent hyperplane has normal vector (11,0,-1) and passes through the point (2,1,7), so it has equation

$$(11, 0, -1) \cdot (x - 2, y - 1, z - 7) = 0,$$
 $11(x - 2) - (z - 7) = 0.$

Theorem 6. Let $A \subset \mathbb{R}^n$ be an open subset and $f : U \to \mathbb{R}^m$. If the partial derivatives $\frac{\partial f_i}{\partial x_j}$ exist and are continuous in an open neighborhood of $P \in A$, then f is differentiable at P.

Proof. We will assume that m = 1, and prove the case for n = 2. The general case is similar. Take $f : \mathbb{R}^2 \to \mathbb{R}$. Suppose P = (a, b), and $\overrightarrow{PQ} = h_1 \hat{i} + h_2 \hat{j}$. Let

$$P_0 = (a, b) = P,$$
 $P_1 = (a + h_1, b),$ $P_2 = (a + h_1, b + h_2) = Q.$
 $f(Q) - f(P) = [f(P_2) - f(P_1)] + [f(P_1) - f(P_0)]$

Recalled the Mean Value Theorem:

Theorem 7 (Mean Value Theorem). Let $g : [a, b] \to \mathbb{R}$ be continuous and differentiable everywhere on (a, b), then there exists $c \in (a, b)$, such that

$$f(b) - f(a) = f'(c)(b - a).$$

So we can find Q_1 somewhere on the segment P_0P_1 and Q_2 somewhere on the segment P_1P_2 such that

$$f(P_1) - f(P_0) = \frac{\partial f}{\partial x}(Q_1)h_1, \qquad f(P_2) - f(P_1) = \frac{\partial f}{\partial y}(Q_2)h_2.$$

Hence,

$$f(Q) - f(P) = \frac{\partial f}{\partial x}(Q_1)h_1 + \frac{\partial f}{\partial y}(Q_2)h_2.$$

$$\begin{aligned} \frac{|f(Q) - f(P) - T\overrightarrow{PQ}|}{||\overrightarrow{PQ}||} &= \frac{|(\frac{\partial f}{\partial x}(Q_1) - \frac{\partial f}{\partial x}(P))h_1 + (\frac{\partial f}{\partial y}(Q_2) - \frac{\partial f}{\partial y}(P))h_2|}{||\overrightarrow{PQ}||} \\ &\leq \frac{|(\frac{\partial f}{\partial x}(Q_1) - \frac{\partial f}{\partial x}(P))h_1|}{||\overrightarrow{PQ}||} + \frac{|(\frac{\partial f}{\partial y}(Q_2) - \frac{\partial f}{\partial y}(P))h_2|}{||\overrightarrow{PQ}||} \\ &\leq \frac{|(\frac{\partial f}{\partial x}(Q_1) - \frac{\partial f}{\partial x}(P))h_1|}{|h_1|} + \frac{|(\frac{\partial f}{\partial y}(Q_2) - \frac{\partial f}{\partial y}(P))h_2|}{|h_2|} \\ &= |(\frac{\partial f}{\partial x}(Q_1) - \frac{\partial f}{\partial x}(P)| + |\frac{\partial f}{\partial y}(Q_2) - \frac{\partial f}{\partial y}(P)| \end{aligned}$$

As $Q \to P$, $Q_1, Q_2 \to P$. Since the partial derivatives of f are continuous, we have

$$\lim_{Q \to P} \frac{|f(Q) - f(P) - T\overrightarrow{PQ}|}{\|\overrightarrow{PQ}\|} \le \lim_{Q \to P} \left(\left| \left(\frac{\partial f}{\partial x}(Q_1) - \frac{\partial f}{\partial x}(P)\right) \right| + \left| \frac{\partial f}{\partial y}(Q_2) - \frac{\partial f}{\partial y}(P)\right) \right| \right) = 0.$$

Therefore, f is differentiable at P with derivative T.

Remark. The existence of derivative at
$$P$$
 is much stronger than the existence of partial derivatives at P . Just because function behave nicely along the x and y axes directions, it doesn't mean that the function behaves nicely along every path approaching P . See the following example.

Example 11.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Check that f is continuous at the origin, and by definition of partial derivative,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

we have $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, so z = 0 will be the tangent plane at the origin if f were differentiable, i.e. Df(0,0) = (0,0). But along the line y = x,

$$\lim_{h \to 0} \frac{f(h,h) - f(0,0)}{\|(h,h)\|} = \frac{1}{\sqrt{2}} \neq 0.$$

So even though the partial derivatives exist at (0,0), f is not differentiable at (0,0). z = 0 is certainly not tangent to a path in the plane along the direction y = x. One can check that when $(x, y) \neq (0, 0)$

$$\frac{\partial f}{\partial x} = \frac{2xy}{x^2 + y^2} - \frac{2x^3y}{(x^2 + y^2)^2}, \qquad \frac{\partial f}{\partial y} = \frac{x^2}{x^2 + y^2} - \frac{2x^2y^2}{(x^2 + y^2)^2}.$$

Neither of which has limit or is continuous at (0,0). In fact, let

$$g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ are both 0 at (0,0). But g(x,y) is not even continuous at (0,0), and hence certainly not differentiable.

Definition 10. If f is differentiable and Df is continuous, then f is of class C^1 . *Remark.* The converse to Theorem 6 is not true: f can be differentiable with non-continuous partial derivatives. For example,

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{(x^2 + y^2)^{1/2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}, \qquad \lim_{(x,y) \to (0,0)} f(x,y) = 0$$

so f is continuous.

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0.$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0.$$

f is differentiable at (0,0) since

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}}{\sqrt{h^2 + k^2}} = \sqrt{h^2 + k^2} \sin \frac{1}{(h^2 + k^2)^{1/2}} = 0.$$

 $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist everywhere away from the origin,

$$\frac{\partial f}{\partial x} = 2x \sin \frac{1}{(x^2 + y^2)^{1/2}} - \frac{x}{(x^2 + y^2)^{1/2}} \cos \frac{1}{(x^2 + y^2)^{1/2}}, \qquad (x, y) \neq (0, 0)$$

$$\frac{\partial f}{\partial y} = 2y \sin \frac{1}{(x^2 + y^2)^{1/2}} - \frac{y}{(x^2 + y^2)^{1/2}} \cos \frac{1}{(x^2 + y^2)^{1/2}}, \qquad (x, y) \neq (0, 0)$$

but they are not continuous at (0,0) because their limits do not exist at (0,0):

$$\frac{x}{(x^2+y^2)^{1/2}}\cos\frac{1}{(x^2+y^2)^{1/2}} = \frac{r\cos\theta}{r}\cos\frac{1}{r} = \cos\theta\cos\frac{1}{r}$$

Let $r = \sqrt{x^2 + y^2}$, $f(x, y) = g(r) = r^2 \sin \frac{1}{r}$ is differentiable at r = 0, but $g'(r) = 2r \sin \frac{1}{r} - \cos \frac{1}{r}$

has no limit at r = 0 and a fortiori is not continuous at r = 0.

3 Review on Limits and Differentiability

1. How to show limit of a function exists at (0,0):

- $\epsilon \delta$ argument.
- The function can be decomposed as sums, products, compositions of functions with limits.
- Squeezing method: usually applies when denominator is a sum of even powers, usually can reduce a function of two variables to a function of one variable. Eg: $\frac{x^4y^4}{x^6+y^2}$, $\frac{x^4y^2}{x^8+y^2}$.
- Polar coordinates method: Eg: $\frac{x^2y}{x^2+y^2}$, $\frac{x^4y^4}{x^6+y^6}$.
- L'ôpital's Rule can be useful when evaluating limit of a function of a single variable. Eg: $\frac{e^{xy}-1}{y} = \frac{e^{xy}-1}{xy} \cdot x = \frac{e^t-1}{t} \cdot x.$
- 2. How to show limit of a function doesn't exist at (0,0):
 - If the denominator can be made to vanish. Eg: $\frac{x^{10}y^5}{x^5+y^{10}}$ set $x = -y^2$.
 - If you can find two approaches to the origin with different limits. Usually try set x = 0, y = 0, or y = kx, to see if two different limits can be obtained. Eg: $\frac{xy}{x^2+y^2}$. Sometimes, you may need to find a more obscure path to get a different limit. Eg: $\frac{x^2y}{x^4+y^2}$.
 - Polar coordinates method: $\frac{x^2y^3}{x^6+y^6}$, $\frac{x^2y^4}{x^6+y^6}$.
- 3. How to show a function is continuous at (0, 0):
 - The function can be decomposed as sums, products, compositions of functions continuous at (0, 0).
 - Show limit of the function exists and coincides with the value of the function at (0,0).
- 4. How to show a function is not continuous at (0,0):
 - Show limit of the function doesn't exist.
 - If the limit exists, show it's different from the value of the function at (0,0).
- 5. How to show a function is differentiable at (0, 0):
 - The function can be decomposed as sums, products, compositions of functions differentiable at (0, 0).

• Computer partial derivatives of the function at (0,0)

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}, \qquad f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k}$$

and use it to show that

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k) - f(0,0) - \nabla f(0,0) \cdot (h,k)}{\|(h,k)\|} = 0$$

- Compute the partial derivatives of the function $f_x(x, y)$ and $f_y(x, y)$ show they are continuous at (0, 0).
- 6. How to show a function is not differentiable at (0,0):
 - Show function is not continuous at (0,0).
 - If function is continuous at (0,0), show partial derivatives do not exist at (0,0). Eg: $f(x,y) = \sqrt{x^2 + y^2}$.
 - If partial derivatives exist at (0,0), show

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - \nabla f(0,0) \cdot (h,k)}{\|(h,k)\|}$$

doesn't exist or is not 0. Eg: $f(x,y) = (xy)^{1/3}$.