
MAT 307, Multivariable Calculus with Linear Algebra – Fall 2024

1 Matrices and Vector Spaces

1.1 Matrices

An m× n matrix A is a table of numbers

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
We will write A = [aij], where aij is the entry in the ith row and jth column.

Matrices are essential to all engineering and applied sciences problems. They can
be used to represent a system of linear equations; provide connectivity information
in graphs/networks; represent operators on spaces, functions, etc. For example, the
numbers aij could represent

• the color of the (ij)-th pixel on a screen

• the temperature in city i on day j

• the value of feature i (e.g. rating for a film on Netflix) for user j

We can also write A in terms of rows and columns as

A =
[
~v1 ~v2 · · · ~vn

]
=


~r1
~r2
...
~rm

 .
Here, ~vj, with j = 1, . . . , n, are the column vectors of A and ~ri, with i = 1, . . . ,m,
are the row vectors of A. Notice that each ~vj is an m× 1 matrix and each ~ri is an
1× n matrix. For us, a vector is an m× 1 matrix.

The transpose of A is an n×m matrix, denoted by At, obtained by flipping A along
the diagonal. For example

[
1 2 3 4
5 6 7 8

]t
=


1 5
2 6
3 7
4 8

 .
The set of all m×n matrices is denoted by M(m,n) and the set of all m×1 matrices
(i.e. vectors) is denoted by Rm. M(m,n) and Rm are more than just sets, they have
the structure of vector spaces.
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1.2 Vector spaces

Definition 1. A real vector space V is a set along with the operations of addition
and scalar multiplication satisfying:

1. For all X, Y ∈ V , there is an element X + Y ∈ V ,

2. For X ∈ V and k ∈ R, there is an element k ·X ∈ V .

Furthermore, the following conditions hold for all k, l ∈ R and X, Y, Z ∈ V .

• Commutativity: X + Y = Y +X

• Associativity of Addition: X + (Y + Z) = (X + Y ) + Z

• Additive Identity: there exists 0 ∈ V such that X + 0 = X

• Additive Inverse: there exists −X ∈ V such that X + (−X) = 0

• Multiplicative Identity: 1 ·X = X

• Associativity of Scalar Multiplications: (kl)X = k(lX)

• Distributativity I: k(X + Y ) = kX + kY

• Distributativity II: (k + l)X = kX + lY

Remark. The number of properties listed is long but reasonable, basically they tell
us that the laws of algebra work. Verifying all the vector space axioms would be
rather tedious, later we will see that in most cases we don’t need to verify all of them.

Example 1. Some examples of vector spaces:

1. Rn for n ≥ 0.

2. A line in R2 through the origin.

3. A plane in R3 through the origin.

4. M(m,n) — the set of m× n matrices.

Example 2. The following are not vector spaces. Why?

1. {~v = [v1, . . . , vn]t ∈ Rn | v1 ≥ 0} — no additive inverse.

2.

{[
a b
c d

]
∈M(2, 2) | ad− bc 6= 0

}
— no additive identity.

3.

{[
a b
c d

]
∈M(2, 2) | ad− bc = 0

}
—

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
has ad−

bc = 1, so the sum is not in the set — one says not closed under addition.
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1.3 Linear Transformations

Given A ∈ M(m,n), we can think of A~x as A “applied” to ~x. That is, for every
~x ∈ Rn, we obtain a vector A~x ∈ Rm. Thus, A maps/transforms Rn to Rm. We
can then define a function TA : Rn → Rm given by TA(~x) = A~x.

Notice that

TA(~x+ ~y) = A(~x+ ~y) = A~x+ A~y = TA(~x) + TA(~y) and

TA(c~x) = A(c~x) = cA~x = cTA(~x).

Functions between vectors spaces that satisfy these two properties will be the focus
of this course going forward.

Definition 2. A map T : V → W where both V and W are vector spaces is called
a linear transformation or linear map if T (X + Y ) = T (X) + T (Y ) and
T (cX) = cT (X) for all X, Y ∈ V and for all scalars c.

Example 3. The map f : R2 → R2 given by f(x, y) = (2x, 5y) is a linear trans-
formation that corresponds to stretching the x-direction by 2 and the y-direction

by 5. Another example is g : R2 → R2 given by g(x, y) =
(

x−
√
3 y

2
,
√
3x+y
2

)
, which

corresponds to rotating the plane counter-clockwise around the origin by angle π/3.

Our first observation is that for any A ∈M(m,n), the map TA : Rn → Rm is a linear
transformation.

Our second observation is that T (0) = 0 because T (X) = T (0 +X) = T (0) + T (X)

For linear transformations between Euclidean spaces, we have the following result.

Theorem 1. Any linear transformation T : Rn → Rm can be defined as multiplication
by an m× n matrix A. That is, T = TA for some A ∈M(m,n).

Proof. We will first build the matrix A ∈M(m,n) and then verify that T = TA. Let
A be the matrix whose ith column is ~vi = T (êi) for 1 ≤ i ≤ n. Any ~x ∈ Rn can be
written uniquely (this is due to Proposition 3 below) as

∑n
i=1 xiêi. Since T is a linear

transformation,

T (~x) = T

(
n∑

i=1

xiêi

)
=

n∑
i=1

xiT (êi) =
n∑

i=1

xi~vi = A

x1...
xn

 = A~x = TA(~x).
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1.4 Linear dependence

Definition 3. Let S = {A1, A2, . . . , Ak} be a set of elements of vector space V . We
say C ∈ V is linearly dependent on S if there exists bi ∈ R, such that

C =
k∑

i=1

biAi = b1A1 + b2A2 + · · ·+ bkAk.

In this case, we say C is a linear combination of the Ai’s

Example 4. (Computing grades) Let ~h, ~q, ~m, ~f be column vectors such that hi is the
homework average, qi is the quiz average, mi is the midterm grade, and mi is the file
exam grade of the ith student in this class. The final grades ~g for all the students can
be computed as

~g = 0.25 · ~h+ 0.20 · ~q + 0.25 · ~m+ 0.3 · ~f

That is, ~g is linearly dependent on {~h, ~q, ~m,~g}.

Definition 4. Let S = {A1, A2, . . . , Ak} ⊂ V , then

• S is linearly dependent if S = {0} or if there is at least one Ai that is a linear
combination of the other elements of S. This is equivalent to saying that at
least one Ai is linearly dependent on S r {Ai}.

• S is linearly independent if it is not linearly dependent, i.e. no Ai is a linear
combination of the other elements of S.

Remark. The zero element 0 ∈ V is linearly dependent on any non-empty subset
of V because for any A ∈ V one has 0 = 0 · A. Therefore, any set S containing 0
is linearly dependent. The nullset {} is linearly independent, since it is not linearly
dependent as it contains no elements.

Exercise 1. Understand why the following are true.

• {cos2(x), sin2(x), 1} is linearly dependent.

• {cos(x), sin(x), 1} is linearly independent.

• {[1, 0, 0]t, [1, 0, 1]t, [0, 0, 1]t} is linearly dependent.

• {[1, 1, 0]t, [2, 0, 1]t, [1, 0, 1]t} is linearly independent.

Proposition 2. A set S = {X1, . . . , Xn} ⊂ V is linearly dependent if and only if
there are c1, . . . , cn ∈ R such that

0 = c1X1 + · · ·+ cnXn and cj 6= 0 for some j.

4



Proof. (⇒) Assume that {X1, . . . , Xn} is linearly dependent. Then, either S = {0}
or for some j, Xj =

∑
i 6=j ciXi. Let cj = −1, then 0 =

∑n
i=1 ciXi and cj = −1 6= 0.

(⇐) Conversely, assume that there are c1, . . . , cn ∈ R with 0 =
∑n

i=1 ciXi and cj 6= 0

for some j. Then, either S = {0} or Xj =
∑

i 6=j

(
− ci

cj

)
Xi is a (nonempty) linear

combination, which means that S is linearly dependent.

The span of S is the set of all linear combinations of elements of S. That is

span(S) =

{
C ∈ V | C =

k∑
i=1

biAi for bi ∈ R

}
.

Exercise 2. Draw pictures to explain why these are true.

• span{[1, 0, 0]t, [1, 0, 1]t, [0, 0, 1]t} is a plane in R3.

• span{[1, 1, 0]t, [2, 0, 1]t, [1, 0, 1]t} is all of R3.

Proposition 3. The standard basis vectors êi of Rn where the i-th coordinate is 1
while the rest are 0 for i = 1, 2, · · · , n are linearly independent and span Rn.

Can you see why? Note that Rn is also the span of the {êi}ni=1 since any ~v ∈ Rn can
be written as ~v =

∑n
i=1 viêi.

Exercise 3. Can you show that {

1
a
b

 ,
0

1
c

 ,
0

0
1

} is linearly independent and spans

R3? Here a, b, c are some fixed real numbers. You need to prove both parts of the
statement under the assumption that a, b, c are any real numbers.

We will now focus our attention on linear dependence/independence for vectors and
matrices. Our goal is to find an algorithm to determine whether a set of vectors is
linearly dependent or not.

2 Linear Systems of Equations

2.1 Linear systems

A linear equation in a variable x has the form ax = b where a, b are scalars.
Equations such as sin(x) = ex, x2 = 1/x are not linear and are not considered. A
general linear equations in n variables has the form

c1x1 + c2x2 + · · · cnxn = c0,
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where xi are the variables/unknowns and ci are scalars.

For example, the set of points in the xy-plane satisfying ax+ by = c form a line; the
set of points in R3 satisfying ax+ by + cz = d form a plane. The set of points in Rn

satisfying the general linear equation above is a hyperplane.

A system of linear equations is a collection of linear equations.

a11 x1 + a12 x2 + · · ·+ a1n xn = b1

a21 x1 + a22 x2 + · · ·+ a2n xn = b2
...

am1 x1 + am2 x2 + · · ·+ amn xn = bm

The m × n matrix A = [aij] is called the coefficient matrix of the system. Let

A =
[
~v1 ~v2 · · · ~vn

]
be the column vectors of A. Setting ~b =

[
b1 b2 · · · bm

]t
, the

system of linear equations is equivalent to saying that

x1 ~v1 + x2 ~v2 + · · ·+ xn~vn = ~b

That is, ~b is a linear combination of {~v1, ~v2, . . . , ~vn}. Here, x1, . . . , xn are the un-
knowns of the system. The expression on the left-hand size appears frequently
enough to define the short-hand operation

A~x = A


x1
x2
...
xn

 def
=== x1~v1 + · · ·+ xn~vn.

Thus, the system of linear equations is reduced to the expression A~x = ~b.

We can also go backwards. For any A ∈ M(m,n) and vector ~b ∈ Rm, the expression

A~x = ~b defines a system of m linear equations with n unknowns given by ~x ∈ Rn.

The system has a solution if and only if ~b is a linear combination of the column
vectors of A (i.e. ~b is in the span of {v1, . . . , vn}). A system that does not have a
solution is called inconsistent.

The m× (n+ 1) matrix [A | ~b ] formed by both the coefficients aij and the constants
bi is called the augmented matrix.

Example 5.
2x− y − z = 0
−2x+ y − z = −6
x− 2y + 3z = 3
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This system consists of three equations for three unknowns x, y, and z. In matrix
notation, the system can be written as

A =

 2 −1 −1
−2 1 −1
1 −2 3

 , ~b =

 0
−6
3

 , and [A | ~b ] =

 2 −1 −1 0
−2 1 −1 −6
1 −2 3 3

 .
To solve this system, we can use the method of elimination of variables: the first
equation gives z = 2x+ y. Substituting this into the second and third equations,

−4x+ 2y = −6, 7x− 5y = 3.

The first equation gives y = 2x−3. Substituting into the second equation gives x = 4.
Hence, x = 4, y = 5, and z = 3.

Proposition 4. The column vectors of A are linearly independent if and only if the
only solution to A~x = ~0 is ~x = ~0.

Proof. By definition A~x = x1~v1 + · · · + xn~vn, where ~vi are the column vectors of A.
From this point of view, this proposition is the contrapositive of Proposition 2.

Since the solution set of a systemA~x = ~0 determines the linear dependence/independence

of the columns of A, we want to find a way to solve linear systems A~x = ~b efficiently.
In the next lecture, we will develop the method of Gaussian elimination, but for
now, let us focus on the geometry of linear systems.

2.2 Geometry

For the system in Example 5 the solution occurs at the intersection of all three planes.
The normal to each plane is understood as the row vectors ~ri of A. Thus, the row
vectors determine how corresponding planes intersect one another.

Consider two planes a11 x + a12y + a13z = b1 and a21 x + a22y + a23z = b2. Let A be
the coefficient matrix and [A | ~b ] the augmented matrix. The two planes in R3 will

• intersect in a line if the two planes are not parallel. Let ~r1 and ~r2 be the row
vectors of A, then the two planes are not parallel if and only if {~r1, ~r2} is linearly
independent. For example, consider the augmented matrix

[A | ~b ] =

[
4 0 0 1
0 1 0 2

]
• coincide in the same plane if the rows of the augmented matrix are linearly

dependent. For example, consider the augmented matrix

[A | ~b ] =

[
1 0 0 1
2 0 0 2

]
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• be parallel if ~r1 and ~r2 are linearly dependent but the two row vectors of [A | ~b ]
are linearly independent. For example, consider the augmented matrix

[A | ~b ] =

[
1 0 0 1
1 0 0 2

]
Two equations in three unknowns have either no common solutions (i.e. inconsistent)
or infinitely many solutions.

For systems with three equations to have a solution, we have to intersect the line or
plane solving two of the equations with the plane representing the third equation.
Three planes can intersect in

• 0 points when the system is inconsistent because either all three planes are
parallel; or the three planes intersect in two or three lines that are pairwise
parallel. Here are some examples,

[A | ~b ] =

1 0 0 1
1 0 0 2
1 0 0 3

 ,
1 0 0 0

1 0 0 1
0 1 0 0

 ,
1 0 0 0

0 1 0 0
1 1 0 1


• infinitely many points, when three planes intersect along the same line (eg: the

system x = 2, y = 2, x − y = 0), or when they overlap in the same plane (eg:

the system x = 1, 2x = 2, 3x = 3). The system is consistent and ~b lies in the
same plane or line spanned by the three column vectors of A.

[A | ~b ] =

1 0 0 2
0 1 0 2
1 −1 0 0

 ,
1 0 0 1

2 0 0 2
3 0 0 3


• 1 point, when the three row vectors ~ri of A are linearly independent. As we

shall see later, ~b can then be expressed uniquely as a linear combination of the
column vectors. An example augmented matrix is

[A | ~b ] =

1 0 0 1
0 1 0 2
0 0 1 3


Definition 5. The rank r of a system of m linear equations in n unknowns is the
maximal number of linearly independent rows in the augmented matrix
[A | ~b ]. In general, rank(A) of a matrix A is the maximal number of linearly inde-
pendent rows in A.1

1Why is this not a very good definition? We will find a better one in the next lecture.
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For a system of m linear equations in n unknowns, where we have

A~x = ~b, A ∈M(m,n), ~x ∈ Rn, ~b ∈ Rm

Next time, we will show that if m < n, there are either no solution or infinitely many
solutions. If m ≥ n, then there maybe 0, 1, or infinitely many solutions. The number
of solutions to a linear system depends on both r′ = rank(A) and r = rank([A | ~b ]).
We will use Gauss-Jordan elimination to create an efficient algorithm to compute r
and r′.

By computing r and r′ for the examples above, we find empirically that

• If r′ < r, the system is inconsistent and has no solution.

• If r = r′ < n, then the system has infinitely many solution.

• If r = r′ = n, the system has a unique solution.

9


	Matrices and Vector Spaces
	Matrices
	Vector spaces
	Linear Transformations
	Linear dependence

	 Linear Systems of Equations
	Linear systems
	Geometry


