MAT 307, Multivariable Calculus with Linear Algebra — Fall 2024

1 Taylor’s Theorem

If f:U — R is a differentiable function, P € U, one can use the derivative to
write down the best linear (tangent plane) approximation to f at P. One might
also like to do better using quadratic, or higher degree, approximation.

Recall in one-variable calculus that

Definition 1. f: I C R — R is C*-function, for ¢ € I, the k-th order Taylor
polynomial of f centered at x; is given by
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T f(a,20) = F(a0) + £ (ao)a — o) + - L0 - = 3 T e
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The remainder is the difference
Ry f(x,20) = f(z) — Tif (2, 70), % — 0.

The Taylor polynomial is chosen so that the first k derivatives of T f at xg
are precisely the same as those of f. So the first k£ derivatives of the remainder
are all zero. The remainder is a measure of how good the Taylor approximation
of f.

Generalizing to functions from R” to R.

Definition 2. Let U C R" be an open subset which is convex (i.e. if P and

@ are in U, then so does every point on the line between P = (py,...,p,) and
Q = (x1,...,2,)). Suppose f : U — R is Ck. Given P € U, the k-th Taylor
polynomial of f centered at P is

of

%

32
S (P =), )

(P)—p)+y 3

1<i,j<n

Tof(Q,P)=f(P)+ Y

1<i<n

TR >, ak—f(P)(._.)...(._.)
Kl B oy, D)@ = pa) - (Ta = Pa):

" 1<in iz, ik <n

The remainder is the difference

Rif(Q, P) = f(Q) = T f(Q, P).

If fis Ck*!, then
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Writing out the first few terms of the Taylor polynomial of f, we have

L1Q.P) = 1(P)+ Y Tp c Y

1<z<n 1<z J<n

axl 8:5] — i) (953' —Dj )

The second term is simply

V§(P)- PG.

The third term is

SEOHOPPG, P = (i),

8@-8:@-

where H(f)(P) is called the Hessian of f at P. It is a symmetric matrix because
mixed partials are equal.

Example 1. Find the second order Taylor polynomial approximation of f(z,y, z) =

2%y — 4z near the point P = (1,2,4).
Let @Q = (x,y, ), then

Lf(Q,P)

= J(P)+VH(P)- PG+ SPOH()(P) - PQ

1 2y 2z 0
= —14+41,-4) (z—-lLy—22—4)+=-(x—1Ly—2,2—4)| 2z 0 0
2
0 0 O
1 4 20
= —-M4+4,1,-4) - (e—lLy—2,z—4)+-(z—1,y—2,2—4) 2 0 0O
2 000

= —M+4z -1+ (y—2)—4z—4)+2x -1 +2x—1)(y—2)

Example 2

a b
[ T1 X } [ c d} [32 } = az1y1 + br1ys + crayr + dy1yo

b
[a: y} {Z c} [i]zax2+2bxy+cy2

Example 3. Find the second order Taylor polynomial approximation of f(z,y, z) =

2%y — 4z near the point P = (1,2,4).

z—1
y—2
z—4
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Let Q = (z,y, z), then

T,f(Q, P)
= [(P)+Vf(P)- PO+ SPOH(f)(P)- PQ

1 2y 22 0
= —M4+4, 1L, -4 (ze—1ly—2,z—4)+=-(r—1Ly—2,z—4)| 2z 0 O
2
0 0 O
1 4 2 0
= —14+41,-4) (r-lLy—22—4)+-(xe—1y—2,z—4) 2 0 0
2 000

= —MU+4z-1D+@wy-2)—4(z—-4) +202-1*+2x-1)(y—-2)

Note that H(f)(P) is symmetric.
What about Taylor approximation at P = (0,0,0)? f(z,y,z) is already a
polynomial!

Tlf(Q> (Ov 07 O)) = TQf(Qa (Oa 07 0)) = _4Za TS(f(Qv (O’ 07 0)) = x2y — 4z

Recall that K C R” is closed if the complement K¢ is open, and this is
equivalent to saying that K contains all of its boundary points.

Definition 3. K C R" is said to be bounded if there is a real number M such
that ||Z|| < M for all # € K. K is compact if K is closed and bounded.

Example 4. 1. [a,b] is compact.
2. (a,b] is bounded but not closed, so not compact.
3. [a,0) is closed but not bounded, so not compact.
4. K ={x € R" | ||z|]| < M} is compact.
5. K ={xz € R" | ||z|| < M} is bounded but not closed.
We quote a key theorem without proof:

Theorem 1. Suppose f : K — R is continuous, if K is compact, then there are
two points P, and P, in K such that for all P € K, we have

.f(Pmm)Sf( ) f( maz)

To find the maxima and minima of f : K — R, we break the problem into
two parts:

r—1

y—2
P z—4
r—1
y—2
z—4



I. investigate the interior points, using the derivative test.

II. investigate the boundary points, use Lagrange multipliers (next lecture).

Definition 4. Let f : K — R be a function, P € K an interior point. We
say f has a local minimum (resp. maximum) at P if there is an open
ball U = Bs(P) centered at P contained in K such that f(P) < f(Q) (resp.
f(P)> f(Q)) for all @ € U. An interior point P € K is called a critical point
if f is not differentiable at P or if it is, then D f(P) = Vf(P) =

At critical points where derivatives are defined, all directional derivatives are
0.

Proposition 2. Let K C R" be compact, and f : K — R a differentiable
function. If an interior point P € K is a local mazimum (resp. minimum,),
then P s a critical point.

Proof. Note that since P is a local maximum, for h > 0, we have

of f(P+he;) — f(P) of f(P —hé;) — f(P)

P)=1 < P)= lim >
(91:1-( ) hi}%{r h <0, 8x,< )= h—0+ —h 20
for all 7. All the partial derivatives exist, and they must vanish. O

Example 5. o f(z,y) = 2" +y' —day, Vf(z,y) = (4(=° —y),4(y* — 7)), [
has critical points at (0,0), (1,1) and (-1, —1).

o Volcano: f(z,y) = (22 +y?)e” @) Vf(z,y) = 2z(1— (2 +y?)), 2y(1 —
(22 +32)))e~ @ +¥*) | The unit circle and (0, 0) are critical points.

Recall the one variable second derivative test that follows from Taylor’s The-
orem applied to the second Taylor polynomial.

1. If f'(a) =0 and f"(a) <0, then a is a local maximum of f.
2. If f'(a) =0 and f"(a) > 0, then a is a local minimum of f.
3. If f/(a) =0 and f”(a) = 0, then inconclusive.

In higher dimensions, the second Taylor polynomial centered at P is

T.1(Q.P) = f(P) + V(P) - PG+ POH(F)(P)PG".

where

HUNP) = | 5o g )]

Note that H(f)(P) is a symmetric matrix when f is C?. At a critical point, the
second term vanishes. The important term is the quadratic Hessian term. The
difference between f(Q) and T, f(Q, P) is small compared to the quadratic term
if fis C3.



2 Optimization

In higher dimensions, the second Taylor polynomial centered at P is

Tof(Q.P) = f(P) + Vf(P)- PG+ . SPQH()(P)PG".

where

HUNP) = | 5o d- )]

At a critical point, the second term vanishes. The important term is the
quadratic Hessian term. The difference between f(Q) and T, f(Q, P) is small
compared to the quadratic term if f is C3.

Definition 5. If A is a symmetric n X n matrix, then the function
Qa:R" =R, Qa(T) = 7" AT

is called a symmetric quadratic form. @4 is positive definite (resp. neg-
ative) if Qa(Z) > 0 (resp. Qa(¥) < 0) for all & # 0; Q4 is called positive
semidefinite (resp. negative semidefinite) if Q4 (% ) >0 (resp. Qa(Z) <0)
for all & # 0.

Example 6. Let A =1, = ( (1) (1) ), then Qa(x,y) = (z,y)A ( 5 ) = 2%+ y?

is positive definite. If A = —1I5, then Q4(z,y) = —x® — y? is negative definite. If

1 L o . .
A= ( 0 _01 ), then Q4 (x,y) = x? —y? is neither positive nor negative definite.
Using Taylor’s Theorem, we have

Proposition 3. f: K — R is C3, if P €¢ K C R" is an interior critical point,
then

(a) If H(f)(P) is positive definite, then P is a local minimum.
(b) If H(f)(P) is negative definite, then P is a local maximum.

(¢) If ZH(f)(P)Z # 0 for all ¥ # 0, and H(f)(P) and is neither positive nor
negative definite, then P is a saddle point.

Examples of critical points behavior at (0,0):
e 22+ 4% local min
o —12 — 42 local max

o 12 — 4% saddle



o i+t —2* —y* 2% £ y* none of the above
Given the Hessian matrix, we have a determinant test for positive definiteness:

Theorem 4 (Determinant Test). If A is an nxn matriz, let d; be the determinant
of the upper left i x i submatriz. Let Q4(Z) = 7' AZ.

(a) If d; > 0 for all i, then Q4 is positive definite.
(b) If d; > 0 fori even and d; < 0 for i odd, then Q4 is negative definite.

In all other cases, the test is inconclusive.

We do not prove this. In the case of a 2 X 2 matrix A = ( Z l; ), we have

Q(z,y) = ax® + 2bxy + cy®.
Assume d; = a > 0, then

Qey) = (Vs + g +e= D = (var+ - +

dy =a>0and dy = ac — b>.

Hence if a > 0 and ac — b*> > 0, then we have a local min; if @ < 0 and
ac — b* > 0, we have a local max; if ac — b? < 0, we have a saddle; if ac — b* = 0,
then we have an indeterminate critical point that has to be analyzed by other
methods.

Example 7. f(xvy) = 1'3/3 - T - (y3/3 - y)a Vf(ff,y) = (‘Tz - ]-a]- - y2)
The critical points are at (1,1), (1,—1), (=1,1), and (—1,—1). The Hessian

H(f)(z,y) = ( 20x _(;y > (1,1) is a saddle, (—1,1) is a local max, (1,—1) is

ac — b2y2.

a local min, (—1,—1) is a saddle.

Example 8.
flay)=2>—y', glzy) =2"+y"

H(NO.0 = H@0.0 - | § ]
but (0,0) is a saddle for f and a local min for g.
To find global min and max in a domain D, need to check all of the following:
e behavior as P goes to infinity if D is unbounded

e points along the boundary of D



e critical points in interior of D

Example 9. Find global min and max of f(z,y) = x+y+w% in the first quadrant
where x > 0 and y > 0.

e Asx — o0 or y — 00, f(x,y) = 00, so global max does not exist.

e As (x,y) approaches the boundary of D, i.e. x — 0ory — 0, f(z,y) = oo,
so there must be min in the domain D.

o f,=1— x%, and f, =1— x% are defined everywhere in the domain.

e f, =0and f, = 0 implies 2%y = zy* = 8, so (z,y) = (2,2). f(2,2) =6 is
global min.

Example 10. Let K = {(z,y) | 2* + y* < 2}, then K is compact. Define a
function f : K — R by f(x,y) = xy. f is continuous, since K is compact, f
must attain its max and min on K. Since Vf(z,y) = (y,x), the only critical
point is (0, 0).

e = (1 g ).

Since d; = 0 and dy = —1 < 0, determinant test is inconclusive. As f(x,z) > 0
and f(z,—z) <0, (0,0) is a saddle point. Hence the max and min of f must be
on the boundary given by

C={(z,y) | 2* +y*=2}.

Let g : R? — R be the function g(z,y) = 2% + 3, we would like to maximize
or minimize f subject to the condition g(x,y) = 2.

One solution is to eliminate a variable say y from g(z,y) = 2, and substitute
it into f to find max and min.

Alternatively, we can parametrize the boundary by

F(t) = V2(cost, sint).

We need to maximize the composition h : [0,27] — R where h(t) = 2costsint.
Since [0, 27] is compact, h attains its max and min.

R (t) = 2cos*t — 2sin®t = 0, t =m/4,3m/4, 57 /4, T /4.

The method of Lagrange multiplier does the opposite. Instead of eliminating
a variable, we add one variable called A.

To find min/max of f subject to the constraint g = ¢, where f and g are
both C', Lagrange multiplier method, whereby Vf = AVg where Vg # 0 at

7



a min/max, works, because Vg is perpendicular to level curve of g = ¢. For f
to attain min/max, V f must be perpendicular to level curve of g = ¢ as well,
otherwise, the directional derivative of f in one of the two directions along g = ¢
would be positive, so one could increase f by moving in that direction, meaning
we weren’t really at maximum. Since both V f and Vg are perpendicular to the
level curve, V f must be a multiple of Vg at a local max or min.

Vf(z,y) = AVg(z,y),  glz,y) =2
Yy = 2z, x = 2\y, x2+y2:2
r = 2\(2)\z) = 4\ %z

Either z = 0, then y = 2\x = 0, but ¢(0,0) = 0 # 2!

Or z # 0, and 4)\? =1, /\:j:%.

When A =1, y =z, g(z,y) = 22% =2, f(z,y) =2* = 1.

When A = —3, y = —z, g(z,y) = 22° = 2, f(z,y) = —a? = —1.

We have four critical points (+1,41). The maximum of f is 1 at £(1,1) while
the minimum of fis —1 at +(1, —1).
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