- (1) Find the volume of the region sitting above the xy-plane bounded by $x^2 + y^2 = 1$, x = z and z = 0. This region is known as the *hoof of Archimedes*.
- (2) Evaluate the following integrals using polar coordinates

(a)
$$I = \int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy,$$

(b) $I = \int_{\sqrt{2}}^2 \int_{\sqrt{4-y^2}}^y dx dy,$
(c) $I = \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{(1+x^2+y^2)^2} dy dx.$

- (3) Use Green's theorem to compute $\oint_C \vec{F} \cdot d\vec{r}$ if $\vec{F} = (\arctan(y/x), \log(x^2 + y^2))$ along the curve C given by the boundary of the region defined by the polar inequalities $1 \le r \le 2$ and $0 \le \theta \le \pi/2$, oriented counterclockwise.
- (4) Find the work done by the force $\vec{F} = (4x 2y, 2x 4y)$ on a particle going counterclockwise around the circle C: $(x - 2)^2 + (y - 2)^2 = 4$.
- (5) Show that the value of $\oint_C xy^2 dx + (x^2y + 2x)dy$ around any square C depends only on the area enclosed and not on its location in the plane.
- (6) ¹ Consider the function $f(\vec{x}) = ||x||^2$ on \mathbb{R}^3 . It has a unique critical point at the origin $\vec{x} = 0$, which is a global minimum. Find a surface in \mathbb{R}^3 described by $f(\vec{x}) = 0$ such that, restricted to this surface, the function has a unique critical point which is a saddle.

¹Not to appear on the quiz.