MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 1

(1) Using the dot product, prove the Pythagorean theorem. Namely, show that if the lengths a, b, ¢ of the sides
of a triangle satisfy a® + b? = ¢2, then the triangle is a right triangle and visa verse.

Proof: Let i, ¥, be vectors representing the sides of the triangle, so that |@| = a and so on. Since it is
a triangle, @ + ' = w. Then (@ + ) - (@ + ¥) = ¢. But this is also a? + b?> + 2@ - ¢. Thus @ - = 0 which
happens if and only if @ and ¥ are orthogonal. Thus a’ + b> = ¢? if and only if the triangle is right.

(2) Let @ and @ be vectors in R? and recall that the area of the triangle is defined by #' and # is given by
A(¥,@) = §|o+ - @] where o = (—vg,v1) denotes counterclockwise rotation of the vector @ by 90°.

(a) Show that (7 - @0)? = ||]|?||i||? — (¥ - @)%. Explain what this means geometrically.
Solution: We expand and see it:

(T - @)2 = (ugvy — vau)? = udv? 4+ v3u? — 2uiugvi vy,

[T7)1E]1* = (uf + u3)(v] 4+ v3) = ufv} + uivs + udv} + uivs,

2

(T - @)% = (u1v1 + ugwa)? = u?v? + udv? + 2ugugvivs.

Geometrically, - @ is a multiple of the cosine of the angle, ¥, between the vector ¥ and @

—

- = ||V ||| cos 9.

<

If you rotate the vector ¥ counterclockwise 90°, it will make angle 9 + 5 with «. Then
Sl - TR T
v - = ||v]|]]d]| cos(9 + 5) = —[|7]|[|]] sind.

Indeed, we have

192 1@)* — (3~ @)° = |71?1a1*(1 - cos® §) = ||3]|*|@]* sin® & = (5 - @)*.

(b) Use this fact to establish Heron’s formula (most probably due to Archimedes), namely that a triangle
with sides lengths a,b and ¢ has area

1
Area(a,b,c) = \/s(s —a)(s — b)(s — ¢), §:= §(a+b-|-c).
To do this, you will need to relate to (7 #)? with magnitudes of ¥, @ and ¥ — @ (which should describe

the sides of the triangle). There is also some algebra.

Solution: Let use assume that the triangle has vertices O, A and B and a = ||7||, b = ||4] and
¢ = |7 — i||. We know Area(a,b,c) = 3|5+ - il. So

4|Area(a, b, c)|* = (5 - @)* = ||9)*||a||* - (¢ @)

1 . . . . 2
= a?? = 2 (|l — @ - 15 - 1)
1
—a2p? — 7(02 _ a2 —b2)2

o

1
= (2ab— ¢ +a* +bv%)(2ab + * — a® — b?)

1 2 2 2 2
= {((@+0)° =) — (a = b))

:im+b+@m+b—®@—a+®@+a—w~

The formula follows.
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Show that, for fixed side lengths a and b, the triangle with the largest area is right.

Solution: Fixing a, b, we seek the maximum of the function A(c) := Area(a, b, ¢). A simple calculation
(differentiating the square of the area, rather than the area itself) shows
c(a?® + b — c?)

8A(c)

This is zero for ¢ = a® + b?, the Pythagorean relation of a right triangle!

Ale) =

What is more, this allows for a proof of the celebrated Pythagorean theorem: a triangle with side
lengths a,b and c is right if and only if a? 4 b?> = ¢?. For this, we must prove that A’(c) = 0 if and
only if the triangle with side lengths a,b and c is right. This follows from the elementary formula for
the area of a triangle (which does not use Pythagoras):

1
Area(a,b,C) = iab sin C,

where a and b are the lengths of any two sides, and C'is the included angle. Clearly, this is maximized,
as a function of the included angle C, when C' = 7, namely at the right triangle. Thus, a triangle
made with two rigid rods of lengths a,b and an elastic band of variable length ¢ has maximum area
when the angle between a and b is right (and visa versa). Thus, we have proved the Pythagorean

theorem using calculus!
Show that, for a fixed perimeter, the triangle with the largest area is equilateral.

Solution: Fixing p = 2s = a+b+c, we seek the maximum of the function A(a,b) := Area(a, b, p—a—b).
We extremize in both variables
p(p —2a)(p —2b—a)
OpA(a,b) =
bA(a;b) 8A4(a, b)
Since p > 0, a critical point 9yA(a,b) = 0 happens provided either p = 2a or p = 2b + a. But the
former, p = 2a implies that a = b 4 ¢, impossible for a triangle (which famously always satisfies this
with an inequality). Thus we conclude our interest is the critical point p = 2b+ a or b = %(p —a).

Letting now A(a) = A(a, 3(p — a)), we again extremize

1y pp—3a)
(@)= 640a) -

We find A’(a) = 0 implies p = 3a, so that b = %(p —a) =% and ¢c=p—a—b=%, an equilateral.

Let i, v € R? such that they are not parallel, describe the set of vectors sii + U where s + ¢ = 1.
Where are the vectors when s and t are both non-negative?

Solution: First experiment with @ =7 and ¥ = j, s = x and ¢ = 5. Can you guess what the set is?

s=1-—t, sU A+t = U+ (U — )

describes a line through « in the direction of ¥ — @. When t € [0, 1], this is simply the line segment
from « to .

Suppose that @, ¥, W € R? do not lie in the same plane. Describe the set of vectors 7 + s¥ + ti where
r,s,t € Rand r + s+t = 1. Where are the vectors when r, s and ¢ are all non-negative?

Solution: We have
ru+st+tw=rd+st+ (1 —r—s)W=1uw+r(u— )+ s(7— )

span the plane determined by the three points «, ¥, w when r,s,t € R.

If r;s,t > 0, then r + s < 1. Recall from the previous problem that @ + r(d — @) + (1 — ) (¥ — W)
consists of the line segment from @ to ¥, we see that @ + r (@ — ¥) + s(0 — &) is the triangle (convex
hull) bounded by the three points u, ¥/, .
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(4) Four vectors are erected perpendicularly to the four faces of a general tetrahedron, each vector is pointing
outward and has length equal to the area of the face. Show that the sum of these four vectors is 0. This
fact is a precursor to Stokes’ theorem.

Solution: Let ¥, U, U3 be vectors representing the three edges starting from a fixed vertex. The other
three vectors along the edges of the tetrahedron are vo — ¥, U3 — U5, U3 — U1. The four perpendiculars are
173 X 172, Ul X 173, 172 X Ul, ((72 — 171) X ((73 — 171)

One now checks that their sum is 0.

— =

(5) Let u, ¥, w be three vectors that are not co-planar, namely
i+ BT+ ~0 =0 if and only if a=0=~v=0.
(a) Show that @ x ¥, ¥ X @, W X 4 are not co-planar.

Solution: Suppose
QU X U+ PUX W+l X U=

—

= (@ x U) - @ # 0 is the signed volume of
v =0.

— Oy

Dotting it with , ¢, respectively, and recalling V (u, ¥/,
the parallelepiped spanned the u, v, W, we get that o = [

(b) Suppose a, b, c € R, find the point of intersections of the three planes
ﬁ'(%@hz):aa U'(ﬂf’QJ»Z):ba w'(xayaz):c'

Express the solution (x,y, z) as (z,y,2) = ol X W + I X € + yi X V.

Solution: Dotting with «, ¥, @, we have o = V(ﬂ%w)’ 6= fl./ = = v

(6) This problem illustrates some counterintuitive features of high dimensional space. Consider a pyramid in

R™ with vertices at the origin O and é1,ég,- - ,é,. The base of the pyramid is the (n — 1)-dimensional
object B defined by

in =1,2; >0 for allz’}.

B - {([1}1,.’1:2,"' 7‘,1771)
=1

(a) Find the coordinates of the point (called the centroid of B) C' in the base B which is equidistant from
each vertex of B and calculate the length ||O? II.

C=—(L1-.1).

(b) Use the Cauchy-Schwarz inequality to show that C' is the closest point in B to the origin O.

Solution: We have, by Cauchy-Schwarz,
H(wlvw%'" 7‘L71)H2H(17 ﬂl)HQ > ‘(‘Ll? /‘Ln) ’ (17"' ’1)‘2 =1
with equality if and only if (1, -+ ,2,) = A(1,--- , 1), i.e.

Xl = " =Ty = —
n

(c) Calculate the angle 6 between O? and any edge O?,; where V; is the vertex corresponding to é;.
What happens to this angle 6 and the length ||O.C>'H as n — oo?

cosf =

s , i T
(1,0, 0)llll (1, L, )l o= Vn 2



