
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 1

(1) Using the dot product, prove the Pythagorean theorem. Namely, show that if the lengths a, b, c of the sides
of a triangle satisfy a2 + b2 = c2, then the triangle is a right triangle and visa verse.

Proof : Let ~u,~v, ~w be vectors representing the sides of the triangle, so that |~u| = a and so on. Since it is
a triangle, ~u+ ~v = ~w. Then (~u+ ~v) · (~u+ ~v) = c2. But this is also a2 + b2 + 2~u · ~v. Thus ~u · ~v = 0 which
happens if and only if ~u and ~v are orthogonal. Thus a2 + b2 = c2 if and only if the triangle is right.

(2) Let ~v and ~u be vectors in R2 and recall that the area of the triangle is defined by ~v and ~u is given by
A(~v, ~u) = 1

2 |~v
⊥ · ~u| where ~v⊥ = (−v2, v1) denotes counterclockwise rotation of the vector ~v by 90◦.

(a) Show that (~v⊥ · ~u)2 = ‖~v‖2‖~u‖2 − (~v · ~u)2. Explain what this means geometrically.

Solution: We expand and see it:

(~v⊥ · ~u)2 = (u2v1 − v2u1)2 = u22v
2
1 + v22u

2
1 − 2u1u2v1v2,

‖~v‖2‖~u‖2 = (u21 + u22)(v
2
1 + v22) = u21v

2
1 + u21v

2
2 + u22v

2
1 + u21v

2
2,

(~v · ~u)2 = (u1v1 + u2v2)
2 = u21v

2
1 + u22v

2
2 + 2u1u2v1v2.

Geometrically, ~v · ~u is a multiple of the cosine of the angle, ϑ, between the vector ~v and ~u

~v · ~u = ‖~v‖‖~u‖ cosϑ.

If you rotate the vector ~v counterclockwise 90◦, it will make angle ϑ+ π
2 with ~u. Then

~v⊥ · ~u = ‖~v‖‖~u‖ cos(ϑ+ π
2 ) = −‖~v‖‖~u‖ sinϑ.

Indeed, we have

‖~v‖2‖~u‖2 − (~v · ~u)2 = ‖~v‖2‖~u‖2(1− cos2 θ) = ‖~v‖2‖~u‖2 sin2 ϑ = (~v⊥ · ~u)2.

(b) Use this fact to establish Heron’s formula (most probably due to Archimedes), namely that a triangle
with sides lengths a, b and c has area

Area(a, b, c) =
√
s(s− a)(s− b)(s− c), s :=

1

2
(a+ b+ c).

To do this, you will need to relate to (~v ·~u)2 with magnitudes of ~v, ~u and ~v−~u (which should describe
the sides of the triangle). There is also some algebra.

Solution: Let use assume that the triangle has vertices O, A and B and a = ‖~v‖, b = ‖~u‖ and
c = ‖~v − ~u‖. We know Area(a, b, c) = 1

2 |~v
⊥ · ~u|. So

4|Area(a, b, c)|2 = (~v⊥ · ~u)2 = ‖~v‖2‖~u‖2 − (~v · ~u)2

= a2b2 − 1

4

(
‖~v − ~u‖2 − ‖~v‖2 − ‖~u‖2

)2
= a2b2 − 1

4
(c2 − a2 − b2)2

=
1

4
(2ab− c2 + a2 + b2)(2ab+ c2 − a2 − b2)

=
1

4
((a+ b)2 − c2)(c2 − (a− b)2)

=
1

4
(a+ b+ c)(a+ b− c)(c− a+ b)(c+ a− b).

The formula follows.
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(c) Show that, for fixed side lengths a and b, the triangle with the largest area is right.

Solution: Fixing a, b, we seek the maximum of the function A(c) := Area(a, b, c). A simple calculation
(differentiating the square of the area, rather than the area itself) shows

A′(c) =
c(a2 + b2 − c2)

8A(c)
.

This is zero for c2 = a2 + b2, the Pythagorean relation of a right triangle!

What is more, this allows for a proof of the celebrated Pythagorean theorem: a triangle with side
lengths a, b and c is right if and only if a2 + b2 = c2. For this, we must prove that A′(c) = 0 if and
only if the triangle with side lengths a, b and c is right. This follows from the elementary formula for
the area of a triangle (which does not use Pythagoras):

Area(a, b, C) =
1

2
ab sinC,

where a and b are the lengths of any two sides, and C is the included angle. Clearly, this is maximized,
as a function of the included angle C, when C = π

2 , namely at the right triangle. Thus, a triangle
made with two rigid rods of lengths a, b and an elastic band of variable length c has maximum area
when the angle between a and b is right (and visa versa). Thus, we have proved the Pythagorean
theorem using calculus!

(d) Show that, for a fixed perimeter, the triangle with the largest area is equilateral.

Solution: Fixing p = 2s = a+b+c, we seek the maximum of the function A(a, b) := Area(a, b, p−a−b).
We extremize in both variables

∂bA(a, b) =
p(p− 2a)(p− 2b− a)

8A(a, b)
.

Since p > 0, a critical point ∂bA(a, b) = 0 happens provided either p = 2a or p = 2b + a. But the
former, p = 2a implies that a = b + c, impossible for a triangle (which famously always satisfies this
with an inequality). Thus we conclude our interest is the critical point p = 2b + a or b = 1

2(p − a).

Letting now A(a) = A(a, 12(p− a)), we again extremize

A′(a) =
p(p− 3a)

16A(a)
.

We find A′(a) = 0 implies p = 3a, so that b = 1
2(p− a) = p

3 and c = p− a− b = p
3 , an equilateral.

(3) (a) Let ~u,~v ∈ R2 such that they are not parallel, describe the set of vectors s~u + t~v where s + t = 1.
Where are the vectors when s and t are both non-negative?

Solution: First experiment with ~u = î and ~v = ĵ, s = x and t = y. Can you guess what the set is?

s = 1− t, s~u+ t~v = ~u+ t(~v − ~u)

describes a line through ~u in the direction of ~v − ~u. When t ∈ [0, 1], this is simply the line segment
from ~u to ~v.

(b) Suppose that ~u,~v, ~w ∈ R3 do not lie in the same plane. Describe the set of vectors r~u+ s~v+ t~w where
r, s, t ∈ R and r + s+ t = 1. Where are the vectors when r, s and t are all non-negative?

Solution: We have

r~u+ s~v + t~w = r~u+ s~v + (1− r − s)~w = ~w + r(~u− ~w) + s(~v − ~w)

span the plane determined by the three points ~u,~v, ~w when r, s, t ∈ R.
If r, s, t ≥ 0, then r + s ≤ 1. Recall from the previous problem that ~w + r(~u − ~w) + (1 − r)(~v − ~w)
consists of the line segment from ~u to ~v, we see that ~w + r(~u − ~v) + s(~v − ~w) is the triangle (convex
hull) bounded by the three points ~u,~v, ~w.
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(4) Four vectors are erected perpendicularly to the four faces of a general tetrahedron, each vector is pointing

outward and has length equal to the area of the face. Show that the sum of these four vectors is ~0. This
fact is a precursor to Stokes’ theorem.

Solution: Let ~v1, ~v2, ~v3 be vectors representing the three edges starting from a fixed vertex. The other
three vectors along the edges of the tetrahedron are ~v2 − ~v1, ~v3 − ~v2, ~v3 − ~v1. The four perpendiculars are

~v3 × ~v2, ~v1 × ~v3, ~v2 × ~v1, (~v2 − ~v1)× (~v3 − ~v1).
One now checks that their sum is ~0.

(5) Let ~u,~v, ~w be three vectors that are not co-planar, namely

α~u+ β~v + γ ~w = ~0 if and only if α = β = γ = 0.

(a) Show that ~u× ~v,~v × ~w, ~w × ~u are not co-planar.

Solution: Suppose
α~u× ~v + β~v × ~w + γ ~w × ~u = ~0

Dotting it with ~u,~v, ~w respectively, and recalling V (~u,~v, ~w) = (~u× ~v) · ~w 6= 0 is the signed volume of
the parallelepiped spanned the ~u,~v, ~w, we get that α = β = γ = 0.

(b) Suppose a, b, c ∈ R, find the point of intersections of the three planes

~u · (x, y, z) = a, ~v · (x, y, z) = b, ~w · (x, y, z) = c.

Express the solution (x, y, z) as (x, y, z) = α~v × ~w + β ~w × ~u+ γ~u× ~v.

Solution: Dotting with ~u,~v, ~w, we have α = a
V (~u,~v, ~w) , β = b

V (~u,~v, ~w) , γ = c
V (~u,~v, ~w) .

(6) This problem illustrates some counterintuitive features of high dimensional space. Consider a pyramid in
Rn with vertices at the origin O and ê1, ê2, · · · , ên. The base of the pyramid is the (n − 1)-dimensional
object B defined by

B =

{
(x1, x2, · · · , xn)

∣∣∣ n∑
i=1

xi = 1, xi ≥ 0 for all i

}
.

(a) Find the coordinates of the point (called the centroid of B) C in the base B which is equidistant from

each vertex of B and calculate the length ‖
−−→
OC‖.

C =
1

n
(1, 1, · · · , 1).

(b) Use the Cauchy-Schwarz inequality to show that C is the closest point in B to the origin O.

Solution: We have, by Cauchy-Schwarz,

‖(x1, x2, · · · , xn)‖2‖(1, · · · , 1)‖2 ≥ |(x1, · · · , xn) · (1, · · · , 1)|2 = 1

with equality if and only if (x1, · · · , xn) = λ(1, · · · , 1), i.e.

x1 = · · · = xn =
1

n

(c) Calculate the angle θ between
−−→
OC and any edge

−−→
OVi, where Vi is the vertex corresponding to êi.

What happens to this angle θ and the length ‖
−−→
OC‖ as n→∞?

cos θ =
(1, 0, · · · , 0) · 1n(1, 1, · · · , 1)

‖(1, 0, · · · , 0)‖‖ 1n(1, 1, · · · , 1)‖
=

1
n
1√
n

=
1√
n
→ 0, θ → π
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