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Theorem : the angle subtended bythe diameter
of a circle

-

on the circumference is always 90%
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O is the center. R is a

X point on the circumferece
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R = 80 + Or

Note 80--o. Thus
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=- II11 + I = g2-g2 =0
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Thus the angle is right. E
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Theorem :
Let PQRS be any quadrilateral .

-

Consider the figure obtained by connecting
the midpoints of all sides. This figure
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Similarly, I satisfies
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We claim that =- .

This follows since

+ = π and --= .

Thus two sides are parallel.
similar reasoning

shows that the other two

sides are parallel.

Thas
,

the shape is a parallelogram.
E

Note
,
same statement is true of quadralateral

with vertices dividing each side by any
fixed ratio

, say 2: 1.
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