- (1) Drop the condition that $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ in the vector space axioms, but assume that the additive inverse satisfies $\vec{X} + -\vec{X} = -\vec{X} + \vec{X} = 0$. Prove that this condition can be recovered.
- (2) True or False. For each of the following statements, decide if the statement is always true T or if the statement is not always true F. Give reasons for your answers. If a statement is false, give a counterexample.
 - (a) T F Let A be an $m \times n$ matrix, suppose $A\vec{x} = \vec{b}$ has a solution for all $\vec{b} \in \mathbb{R}^m$, then the solution to $A^t\vec{y} = \vec{d}$, when it exists, is unique.
 - (b) |T||F| Suppose A is an $m \times n$ matrix, A and A^t have the same nullity.
 - (c) |T| |F| When a matrix A is non-singular, its transpose A^t can be singular.
 - (d) T F Assume that $A, B \in M(5,7)$ both have rank 3 and $\vec{b} \in \mathbb{R}^5$, then $\{\vec{x} \in \mathbb{R}^7 \mid A\vec{x} = \vec{b} \text{ and } B\vec{x} = \vec{0}\}$ is always non-empty.
 - (e) |T| |F| If A and B are two $n \times n$ matrices, if AB = 0 then A = 0 or B = 0.
 - (f) T F If A and B are two $n \times n$ matrices, then $(AB)^2 = A^2 B^2$.
 - (g) [T] [F] Suppose $A \in M(m, n)$, $B \in M(n, q)$ and the columns of B are linearly dependent, then columns of AB must be linearly dependent.
 - (h) [T] [F] Suppose A and B are matrices such that AB is defined and the rows of B are linearly dependent, then rows of AB must be linearly dependent.
- (3) Let I_n be the $n \times n$ identity matrix. Suppose A, B are $n \times n$ and A is invertible, show

$$\det(I_n + AB) = \det(I_n + BA).$$

(4) Generalized Cross Product. Given vectors $\vec{v}_1, \ldots, \vec{v}_{n-1} \in \mathbb{R}^n$, suppose there is a vector $\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ satisfying the property that for all $\vec{w} \in \mathbb{R}^n$,

$$\vec{x} \cdot \vec{w} = \det \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_{n-1} & \vec{w} \end{bmatrix}.$$
(1)

(a) Show that

$$x_i = \det \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_{n-1} & \hat{e}_i \end{bmatrix}.$$

$$(2)$$

- (b) Show that \vec{x} as defined in Equation (2) satisfies the property in Equation (1).
- (c) Show that \vec{x} as defined in Equation (2) is the unique vector in \mathbb{R}^n satisfying the property in Equation (1). *Hint: Let* \vec{y} *be another vector satisfying the property that for all* $\vec{w} \in \mathbb{R}^n$,

$$\vec{y} \cdot \vec{w} = \det \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_{n-1} & \vec{w} \end{bmatrix}$$

and show $x_i = y_i$ for all *i*.

(d) Show that \vec{x} is perpendicular to span $\{\vec{v}_1, \ldots, \vec{v}_{n-1}\}$. We therefore call \vec{x} the generalized cross product of $\vec{v}_1, \ldots, \vec{v}_{n-1} \in \mathbb{R}^n$.

(5) Let
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$
. Compute A^{-1} .

(6) * Consider a metal rod of unit length and uniform thermal conductivity. Suppose the temperature T at the ends is fixed T(0) = a and T(1) = b, and subject to a steady source f(x). This gives the ODE

$$\frac{d^2T}{dx^2} = f(x), \qquad T(0) = a, \qquad T(1) = b, \qquad 0 \le x \le 1.$$

For example, if f(x) = 0, then T(x) = a(1-x)+bx. For a more complicated heat source f(x), we introduce a numerical approximation technique called the *finite difference method*. We discretize the problem by giving a numerical approximation to the solution at a finite set of locations

$$x_0 = 0, x_1 = \frac{1}{N}, \cdots, x_i = \frac{i}{N}, \cdots, x_N = 1$$

for some large integer N. Set $T_i = T\left(\frac{i}{N}\right)$ and $f_i = f\left(\frac{i}{N}\right)$ Let $h = \frac{1}{N}$ and approximate

$$\frac{d^2T}{dx^2}(x_i) \simeq \frac{T_{i+1} - 2T_i + T_{i-1}}{h^2}.$$

Using this approximation, derive a linear system to determine $\vec{T} := (T_1, T_2, \ldots, T_{N-1})$, e.g. express $A \vec{T} = \vec{b}$ for an appropriate matrix A and vector \vec{b} (depending on f_i , boundary conditions a, b and spacing h).

$$(7) *$$

(a) Let Δ_n be the determinant of $n \times n$ matrix $\begin{bmatrix}
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & -2 & 1 \\
0 & \cdots & 0 & 0 & 1 & -2 \end{bmatrix}.$ Prove that $\Delta_n - \Delta_{n-1} = -(\Delta_{n-1} + \Delta_{n-2})$ and evaluate Δ_n . (b) Let Δ_n be the determinant of $n \times n$ matrix $\begin{bmatrix}
1 + x^2 & x & 0 & \cdots & \\
x & 1 + x^2 & x & 0 & \cdots \\
0 & x & 1 + x^2 & x & \cdots \\
0 & 0 & x & 1 + x^2 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \cdots \end{bmatrix}.$

Prove that $\Delta_n - \Delta_{n-1} = x^2 (\Delta_{n-1} - \Delta_{n-2})$ and evaluate Δ_n .

^{*}Not to appear on quiz.