MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024

(1) Let $\vec{r}(t)$ be a parametrized curve representing the trajectory of a particle. Let $\vec{v}(t) = \vec{r}'(t)$ be its velocity and $\vec{a}(t) = \vec{r}''(t)$ be its acceleration. Prove that the rate of change of the speed of the particle is the component of its acceleration along its velocity:

$$\frac{d}{dt}\|\vec{v}(t)\| = \operatorname{Comp}_{\vec{v}(t)}\vec{a}(t).$$

Give an example of a particle motion that *does* accelerate, but whose speed never changes.

(2) Consider a particle with position $\vec{r}(t)$ given by the helix

 $\vec{r}(t) = (a\cos\omega t, a\sin\omega t, b\omega t), \qquad a \neq 0.$

- (a) Show the speed of the particle is constant, and the velocity maintains a constant angle with the z-axis.
- (b) Find the arclength parametrization of the helix and compute the curvature and principle normal vector. Show that the acceleration vector of the particle is always parallel to the xy plane.
- (c) Let $P = \vec{r}(0) = (a, 0, 0)$ and $Q = \vec{r}(\frac{2\pi}{\omega}) = (a, 0, 2\pi b)$. Note \overrightarrow{PQ} is vertical. Show that

$$\vec{r}(\frac{2\pi}{\omega}) - \vec{r}(0) = \frac{2\pi}{\omega}\vec{r}'(s)$$

cannot hold for any $s \in (0, \frac{2\pi}{\omega})$. Thus, the Mean Value Theorem does not hold for vector functions.

- (3) Compute the curvature and draw a (rough) picture of the following spirals:
 - (a) the Archimedean spiral $\vec{r}(t) = (t \cos(t), t \sin(t)),$
 - (b) the logarithmic spiral $\vec{r}(t) = (e^t \cos(t), e^t \sin(t)).$

What happens as $t \to \pm \infty$ in both cases? Which do you like better, and why?

- (4) Let $\vec{r}(t)$ be the vector from the origin to the position of an object of mass m > 0, $\vec{v}(t) := \vec{r}'(t)$ be the velocity and $\vec{a}(t) := \vec{r}''(t)$ be the acceleration. Suppose that $\vec{F}(t) = m\vec{a}$ is the force acting at time t.
 - (a) Prove that $\frac{d}{dt}(m\vec{r}\times\vec{v})=\vec{r}\times\vec{F}$. What do you conclude if \vec{F} is parallel to \vec{r} ?
 - (b) Prove that a planet (say, of mass m) moving about the Sun (say, of mass M) does so in a fixed plane. Recall, Newton's universal law of gravity says that $\vec{F} = -\frac{GmM}{\|\vec{r}\|^3}\vec{r}$.
 - (c) Kepler's First Law says that the orbit of a planet around the sun is an ellipse. Derive Kepler's Second Law which states that the rate at which the area swept out by the planet around the sun is constant.*
- (5) (a) Let $\vec{r}(t)$ be a differentiable vector valued function of t. Show that, at a local maximum or minimum of $\|\vec{r}(t)\|$, the vector $\vec{r}'(t)$ is perpendicular to $\vec{r}(t)$.
 - (b) Prove that if the curvature of a curve is identically zero, then the curve is straight.
- (6) [†] Suppose that $\gamma(s) : [0, L] \to \mathbb{R}^d$, $d \ge 2$ is an arc length parametrization of a closed curve Γ of length L. Suppose Γ lies entirely within a sphere of radius R. Prove that average of the absolute curvature $|\kappa(s)| = |\gamma''(s)|$ enjoys the lower bound

$$\frac{L}{R} \le \int_{\Gamma} |\kappa(s)| ds.$$

Use this result, together with some typical numbers found searching the internet, to lower bound the net absolute curvature of a strand of your DNA. Hint: use $\gamma'(s) \cdot \gamma'(s) = 1$ and integrate! Bonus: determine precisely which curves saturate the above inequality.

(Extra) [†] Marsden & Tromba: §1 (review): # 3, 4, 7, 12, 25, 26; §4.1: # 8; §4.2: # 6, 14, 15, 16.

^{*}Hence, planet travels fast when closer to the sun and slower further away from the sun. [†]Not to appear on quiz.