
MAT 307, Multivariable Calculus with Linear Algebra – Fall 2024

1 Matrix Multiplication

Proposition 1. If T : U → V and S : V → W are two linear transformations, then
the composite S ◦ T : U → W is a linear transformation.

Proof. We need to check that S◦T distributes over addition and scalar multiplication.

S ◦ T (~v + ~w) = S(T (~v) + T (~w)) = S ◦ T (~v) + S ◦ T (~w).

S ◦ T (c~v) = S(cT (~v)) = cS ◦ T (~v).

Definition 1. If A ∈ M(m,n) and B ∈ M(n, p) with columns ~v1, . . . , ~vp, then we
define the product matrix AB ∈M(m, p) by

AB =
[
A~v1 A~v2 · · · A~vp

]
.1

Proposition 2. If S : Rn → Rm is represented by an m×n matrix A, and T : Rp →
Rn is represented by an n× p matrix B, then S ◦ T : Rp → Rm can be represented by
the m× p product matrix AB.

Proof. Recall that the jth column of the matrix representation of S ◦ T is given by
(S ◦ T )(êj). Thus, we need to show that this equals the jth columns of AB. Let
~v1, . . . , ~vp be the columns of B, then we have

(S ◦ T )(êj) = S(Bêj) = S(~vj) = A~vj,

Which is the jth column of AB by definition.

Here are is another way to compute the entries of AB.

Proposition 3. Let ~r1, . . . , ~rm ∈M(1, n) be the rows of A = [aik] ∈M(m,n) and let
~v1, . . . , ~vp ∈M(n, 1) be the columns of B = [bkj] ∈M(n, p). Then,

ijth entry of AB = ~ri ~vj = ~r t
i · ~vj =

n∑
k=1

aikbkj.

The ijth entry of AB is the dot product of the ith row of A and the jth column of B.

Proof. By definition, the jth column of AB is A~vj. Reviewing the definition of A~vj,
we see that the ith entry of A~vj is indeed

∑n
k=1 aikbkj, which equals ~r t

i · ~vj.
1Matrix multiplication is not defined if the number of columns of A doesn’t equal the number

fo rows of B
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Example 1. [
cos(α) − sin(α)
sin(α) cos(α)

] [
cos(β) − sin(β)
sin(β) cos(β)

]
=

=

[
cos(α) cos(β)− sin(α) sin(β) − cos(α) sin(β)− sin(α) cos(β)
sin(α) cos(β) + cos(α) sin(β) − sin(α) sin(β) + cos(α) cos(β)

]
=

=

[
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]
Notice that these matrices correspond to counter-clockwise rotation around the origin
in R2 of angle α and β respectively. As you can see, their composition is then a
rotation by angle α + β.

Example 2 (Row reduction as matrix multiplication on the left). Notice that the
three row reduction operations on a matrix A can be expressed through multiplication
on the left by what are called elementary matrices. If A ∈ M(4, n) with rows
~r1, . . . , ~r4. Let

D2(s) =


1 0 0 0
0 s 0 0
0 0 1 0
0 0 0 1

 T14 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 L31(s) =


1 0 0 0
0 1 0 0
s 0 1 0
0 0 0 1

 .
Notice that D2(s)A is the matrix there the second row of A is scaled by s. Also, T14A
is the matrix where rows ~r1 and ~r4 are interchanged. Lastly, L31(s) is the matrix
where ~r3 is replaced by ~r3 + s~r1.

Since matrix multiplication is a representation of composition of linear transforma-
tions. We automatically have the following result.

Proposition 4. Matrix multiplication is

• associative: A(BC) = (AB)C

• left distributative: A(B + C) = AB + AC

• right distributative: (A+B)C = AC +BC

• scalar multiplicative: A(cB) = c(AB) = (cA)B

Note. Matrix multiplication need not commute, i.e. it can be AB 6= BA. First, one
may not be defined. Next, AB and BA need not be the same size matrix. Even if
they are the same size, need not be equal:[

1 2
3 4

] [
1 0
1 1

]
=

[
3 2
7 4

]
,

[
1 0
1 1

] [
1 2
3 4

]
=

[
1 2
4 6

]
.
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1.1 Linear transformations from R2 to itself

Consider a linear transformations T on R2. Let T be represented by a 2 × 2 matrix
A, where the columns of A are T (ê1) and T (ê2). Here are some key examples:

• Scaling: A is a diagonal matrix,

[
a 0
0 b

]
, a, b 6= 0.

• Rotation: Rotations preserve the angle between two vectors and also the
length of each vector. A rotation of degree α has the form

A =

[
cosα − sinα
sinα cosα

]
Check that product of two rotation matrices is again a rotation matrix.

• Projection: A projection onto the line spanned by the unit vector ~v =

[
v1

v2

]
(can be generalized to Rn) takes the form

T (~w) = (~w · ~v)~v, A =

[
v2

1 v1v2

v1v2 v2
2

]
. Note that ker(T ) is the line perpendicular to ~v and im(T ) = span{~v}.
Note. It is obvious that rotation and projection matrices need not commute.

For instance, let A =

[
0 −1
1 0

]
be the rotation matrix counter clockwise by 90

degrees, and B =

[
1 0
0 0

]
be projection onto the x-axis ~e1. Then, the vector

~e1 would be mapped by AB to ~e2, but by BA to ~0. Indeed

AB =

[
0 0
1 0

]
, BA =

[
0 −1
0 0

]
.

• Reflection: A reflection across a line spanned by the unit vector ~v =

[
v1

v2

]
(can be generalized to Rn) takes the form

T (~w) = 2(~w · ~v)~v − ~w, A =

[
2v2

1 − 1 2v1v2

2v1v2 2v2
2 − 1

]
.

For example,

A =

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
, ~v =

[
cosα
sinα

]
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• Shear: Transformations in plane with the property that there is a unit vector

~v =

[
v1

v2

]
such that T (~v) = ~v and T (~w) − ~w is a multiple of ~v for all ~w. If

~u · ~v = 0, then

T (~w) = ~w + (~u · ~w)~v, ~u = c

[
v2

−v1

]
, A =

[
cv1v2 + 1 −cv2

1

cv2
2 −cv1v2 + 1

]
.

For example,

A =

[
1 2
0 1

]
, ~v =

[
1
0

]
, ~u =

[
0
2

]

2 Inverses

Recall that for a linear transformation T : V → W , where V and W are finite
dimensional, the following are true

• T is injective (a.k.a. one-to-one) if and only if ker(T ) is trivial, if and only if
rank(T ) = dim(V).

• T is surjective (a.k.a. onto) if and only if rank(T ) = dim(W).

• If dim(V) = dim(W), then T is injective if and only if T is surjective.

The goal of this section is to discuss the idea of “undoing” a linear transformation.
We will first do this in the language on linear transformations.

Definition 2. A linear transformation T : V → W between two vectors spaces is
said to be invertible if there exists a map S : W → V , such that T ◦ S = IW and
S ◦ T = IV , where IV and IW are identity maps on V and W (i.e. IV(X) = X for all
X ∈ V and IW(Y ) = Y for all Y ∈ W .

Proposition 5. T is invertible if and only if T is bijective (i.e. one-to-one and onto).

Proof. (⇒) Assume T is invertible and let S be an inverse. We see that

(i) T is surjective: Let XY = S(Y ) for a given Y ∈ W , then T (XY ) = T (S(Y ) =
IW(Y ) = Y , so Y ∈ imT and T is surjective.

(ii) T is injective: Assume T (X1) = T (X2), then X1 = IV(X1) = S(T (X1)) =
S(T (X2)) = IV(X2) = X2, so X1 = X2 and T is injective.

(⇐) Conversely, assume T is bijective. Then, for any Y ∈ W , by definition, there
exists a unique X such that T (X) = Y . Define S(Y ) = X. We see that (T ◦S)(Y ) =
T (X) = Y and (S ◦ T )(X) = S(Y ) = X, so S is indeed an inverse.
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If T : V → W is an invertible linear transformation, then we say V and W are
isomorphic and T is an isomorphism between V and W .

Proposition 6. If T : V → W is a linear map, with V and W finite dimensional,
the following are equivalent

• T is invertible.

• T is an isomorphim.

• T is bijective.

• rank(T ) = dimW and null(T ) = 0

• dim(V) = dim(W) and T is injective.

• dim(V) = dim(W) and null(T ) = 0.

• dim(V) = dim(W) = rank(T ).

There are many more properties about invertible transformations that we need to
know. One particular question that should stand out, is an inverse also a linear map?
It is, as shown below. You might also wonder if inverses are unique.

Proposition 7. (i) The inverse of an invertible linear transformation must be a
linear transformation.

(ii) The inverse of an invertible linear transformation is unique. We will let T−1

denote the unique inverse of T .

(iii) (T−1)−1 = T and, in particular, T−1 is invertible.

(iv) For invertible linear transformations T1 and T2, (T1 ◦ T2)−1 = T−1
2 ◦ T−1

1

Proof. (i) Let S be an inverse of T . For Y1, Y2 ∈ W , we know there are X1, X2 ∈ V
such that T (Xi) = Yi and S(Yi) = Xi. We check that S is linear by

S(a1Y1 + a2Y2) = S(a1T (X1) + a2T (X2))
T is lin.

====== S(T (a1X1 + a2X2))

S◦T=IV====== a1X1 + a2X2 = a1S(Y1) + a2S(Y2).

(ii) Suppose T : V → W has inverses S and R, then

R = IV ◦R = (S ◦ T ) ◦R = S ◦ (T ◦R) = S ◦ IW = S.

Hence, R = S. We will let T−1 denote the unique inverse of T .

5



(iii) Suppose T : V → W has inverse S = T−1. So, S ◦ T = IV and T ◦ S = IW . By
definition, T must be S−1, and therefore (T−1)−1 = T .

(iv) Suppose T : V → W and S : W → U are invertible linear transformations.
Check that

T−1 ◦ S−1) ◦ (S ◦ T ) = T−1 ◦ (S−1 ◦ S) ◦ T = T−1 ◦ IW ◦ T = T−1 ◦ T = IV

(S ◦ T ) ◦ (T−1 ◦ S−1) = S ◦ (T ◦ T−1) ◦ S−1 = S ◦ IW ◦ S−1 = S ◦ S−1 = IU .

Hence S ◦ T has T−1 ◦ S−1 as its unique inverse.

2.1 Inverses and matrices

Notice that in order for T : Rn → Rm to be invertible, we need, at the least, that
m = n (but, of course, this is not enough). For A,B ∈ M(n, n), if TB = T−1

A then
we must have AB = In = BA, were In is the n× n identity matrix.

Definition 3. Let A be an n× n square matrix A. A matrix A−1 is the inverse of
A if and only AA−1 = A−1A = In. The matrix A is called invertible if A−1 exists.

It follows from the proposition above that, A−1 is unique, and

(AB)−1 = B−1A−1, (A−1)−1 = A.

Proposition 8. If A is invertible, then there is a unique solution to A~x = ~b given by
~x = A−1~b. In particular, A~x = ~0 can not have non-zero solution.

Proof. Since A(A−1~b) = (AA−1)~b = ~b, A−1~b is a solution. A~x = ~0 has solution
A−1~0 = ~0.

Proposition 9. If A is invertible, then

(A−1)t = (At)−1.

Proof. Since AA−1 = I, apply transpose to both sides, we have (A−1)tAt = I, so
(At)−1 = (A−1)t.

So how to we actually compute A−1? If A is an n× n invertible matrix, we want to
solve A~x = ~y for ~x in terms of ~y. We can do this using Gauss-Jordan elimination
because of the following fact.

Proposition 10. If A ∈ M(n, n) is an invertible matrix, then rref(A) = In. In
particular, A is non-singular.
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Since AA−1 = In, the columns of A−1 are simply solutions to A~xi = êi, where êi are
the standard basis vectors. Hence, Gauss-Jordan elimination should find A−1 by
reducing [A | In] to [In | A−1].

Example 3. Solve for ~x in terms of ~y where

A~x =

3 1 3
3 3 3
2 3 3

x1

x2

x3

 =

y1

y2

y3

 =⇒
3x1 + x2 + 3x3

3x1 + 3x2 + 3x3

2x1 + 3x2 + 3x3

=
y1 + 0 + 0
0 + y2 + 0
0 + 0 + y3

Start with the following augmented matrix

[A | I3] =

3 1 3 1 0 0
3 3 3 0 1 0
2 3 3 0 0 1


E1=


0 1 0
1 0 0
0 0 1


−−−−−−−−−−→

3 3 3 0 1 0
3 1 3 1 0 0
2 3 3 0 0 1


E2=


1 0 0
−1 1 0
0 0 1


−−−−−−−−−−−−→

3 3 3 0 1 0
0 −2 0 1 −1 0
2 3 3 0 0 1


E3=


1/3 0 0
0 −1/2 0
−2/3 0 1


−−−−−−−−−−−−−−−−−→

1 1 1 0 1/3 0
0 1 0 −1/2 1/2 0
0 1 1 0 −2/3 1


E4=


1 0 0
0 1 0
0 −1 1


−−−−−−−−−−−−→

1 1 1 0 1/3 0
0 1 0 −1/2 1/2 0
0 0 1 1/2 −7/6 1


E5=


1 −1 −1
0 1 0
0 0 1


−−−−−−−−−−−−−→

1 0 0 0 1 −1
0 1 0 −1/2 1/2 0
0 0 1 1/2 −7/6 1

 = [I3 | A−1]

So
x1 + 0 + 0
0 + x2 + 0
0 + 0 + x3

=
0 + y2 − y3

−y1/2 + y2/2 + 0
y1/2 − 7y2/6 + y3

In particular, suppose Ei’s are the matrices corresponding to the elementary row
operations used to obtain rref(A), then

EkEk−1 · · ·E2E1A = In.

This suggests that B = EkEk−1 · · ·E2E1 is the inverse of A. However, this only tells
us that BA = In, but why would AB = In? Remember, in general, AC 6= CA
for arbitrary square matrices A,C. However, we have (without proof)

Proposition 11. For A,B ∈ M(n, n), if BA = In, then AB = In. Similarly, if
AB = In, then BA = In. In particular, if B is a left inverse or B is right inverse
then B = A−1.
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Returning to findingA−1 by row reducing [A | In], we showed thatEkEk−1 · · ·E2E1A =
In for some sequence of elementary matrices Ei. It follows from the corollary above
that A−1 = EkEk−1 · · ·E2E1. In particular, we have

Corollary 1. A ∈M(n, n) is an invertible matrix if and only if rref(A) = In (i.e. if
and only if A is non-singular).

Proof. We already saw the forward (i.e. ⇒) direction in the earlier exercise. For the
backward direction (i.e. ⇐), we just showed that A−1 = EkEk−1 · · ·E2E1 above.

All this work shows the non-trivial fact that AEkEk−1 · · ·E2E1 = In.

3 Determinants

Definition 4. The determinant of an n×n matrix A = [aij] is defined by recursive
Laplace (cofactor) expansion : fix a column j, and for each entry aij, take the
(n− 1)× (n− 1) matrix Aij which does not contain the jth column and ith row of A.
Aij is called a minor, and (−1)i+j det(Aij) is called a cofactor. We have

det(A) =
n∑

i=1

(−1)i+jaij det(Aij).

Example 4.

det

([
a b
c d

])
= ad− bc, det

a b c
d e f
g h i

 = aei+ bfg+ cdh− ceg− ahf − bdi

Example 5. The determinant of a diagonal or triangular matrix is the product of
diagonal entries because you can always find a column with only one entry and the
recursively apply this to successive minors.

3.1 Properties of the determinant

• det(At) = det(A).

• If a matrix contains a column (or row) of zeros, then

det(
[
~v1, . . . , ~vk−1,~0, ~vk+1, . . . , ~vn

]
) = 0

To see this, just cofactor expand along the 0 column.
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• det is a multi-linear function in the sense that for each column, we have respec-
tively column additivity and column scalar properties

det(
[
~v1, . . . , ~vk−1, ~v, ~vk+1, . . . , ~vn

]
) + det(

[
~v1, . . . , ~vk−1, ~w,~vk+1, . . . , ~vn

]
) =

= det(
[
~v1, . . . , ~vk−1, ~v + ~w,~vk+1, . . . , ~vn

]
)

and

det(
[
~v1, . . . , ~vk−1, k~v,~vk+1, . . . , ~vn

]
) = k det(

[
~v1, . . . , ~vk−1, ~v, ~vk+1, . . . , ~vn

]
).

The same holds for each row vector. This follows directly from the Leibniz
definition or cofactor expansion of determinant.

For columns, this property is know as (column) multilinearity. Warning:
the determinant is not linear, i.e. det(A+B) 6= det(A)+det(B) almost always.

• The determinant of a matrix with two identical columns/rows is 0.

• Column interchange property: If B is obtained from A by swapping two
columns/rows, then det(A) = − det(B). To see why, let A =

[
~v1, . . . , ~vn

]
and

assume that we are swapping the ith and jth columns to get B. Consider the
matrix C where we replace both the ith and jth columns of A with ~vi+~vj. Then,

0 = det(C) = det(
[
. . . , ~vi + ~vj, . . . , ~vi + ~vj, . . .

]
)

= det(
[
. . . , ~vi, . . . , ~vi + ~vj, . . .

]
) + det(

[
. . . , ~vj, . . . , ~vi + ~vj, . . .

]
)

= det(
[
. . . , ~vi, . . . , ~vi, . . .

]
) + det(

[
. . . , ~vi, . . . , ~vj, . . .

]
)

+ det(
[
. . . , ~vj, . . . , ~vi, . . .

]
) + det(

[
. . . , ~vj, . . . , ~vj, . . .

]
)

= 0 + det(A) + det(B) + 0

Remark. Notice that we used the property that having identical rows/columns
implies that the determinant is zero. We could have gone in the other direc-
tion: assume the column interchange property to show that the determinant
of a matrix with two identical columns is zero. Indeed, suppose two identical
columns are swapped in A to produce B, then det(A) = − det(B), but A = B,
so det(A) = − det(B) = − det(A) = 0. We would, of course, need to find
another proof of the column interchange property to avoid circular reasoning.

Thus, these two properties are logically equivalent. They are also known as
alternating property of the determinant.

• If B is obtained from A by adding a multiple of one column/row to another,
then det(A) = det(B). This follows by linearity and the alternating properties.
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• If c1, . . . , ck are the factors used to scale different rows and s is the number of
row swaps used in deriving rref(A), then det(A) = (−1)sc1 · · · ck det(rref(A)).
Here, “scale” means to multiply a row by 1/ci.

det




0 0 0 1
2 3 4 5
0 6 7 8
0 0 9 10


 = (−1)3 det




2 3 4 5
0 6 7 8
0 0 9 10
0 0 0 1


 = −108.

• An n × n matrix A is invertible if and only if det(A) 6= 0. We can see this
because det(A) and det(rref(A)) are either simultaneously zero or nonzero.

• Multiplicativity: det(AB) = det(A) det(B). To see this, we first assume that
A is invertible. Then, Gauss-Jordan reduces [A | AB] to [I | A−1AB] = [I | B].
By applying the previous bullet point, we see that the determinant has changed
by a factor of det(A) on both sides of the augmented matrix in the process. So
det(AB)
det(A)

= det(B). Lastly, if A is not invertible, then both AB and A are not

invertible, so 0 = det(AB) = det(A).

• If A is invertible, det(A−1) = 1
det(A)

. We simply apply multiplicativity to AA−1.

3.2 Area and volumes

Recall that det(In) = 1 and that det is a multilinear and alternating function on the
space of n-tuples of column vectors (or on the space of n-tuples of row vectors).

Theorem 12. The determinant function det is the unique alternating multilinear
function f from M(n, n)→ R satisfying

• f(In) = 1.

• f is multi-linear in the sense that it satisfies row additivity and scalar properties

• f is alternating in the sense of the row exchange property.

The proof uses induction and the fact that elementary row operations do not alter
the value of an alternating multilinear function Uniqueness is always a nice thing to
have in mathematics, so the uniqueness property of the determinant is no exception.

For example, consider the map area : R2 × R2 → R where area(~v1, ~v2) is the signed
area of the parallelogram with sides ~v1 and ~v2. Here, signed means that the area is
positive if ~v1 is the “right” side of the parallelogram and ~v2 is the “left.” It is negative
in the other case. It follows that area(~v1, ~v2) = −area(~v2, ~v1), i.e. area is alternating.

Using some planar geometry, you should be able to show that area(~v1, ~v2 + ~w) =
area(~v1, ~v2) + area(~v1, ~w). This also hold for the first coordinate (using either the
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same argument or using the alternating property). For c ∈ R, we also see that
area(~v1, c~v2) = c area(~v1, ~v2). Note, if c < 0, then you change the sign of the area.

Lastly, area

([
1
0

]
,

[
0
1

])
= 1. Thus, it follows by the above Theorem that this signed

area is the determinant. Notice that area(~v1, ~v2) = sign(det(
[
~v1, ~v2

]
))|area(~v1, ~v2)|,

where the absolute volume of the signed area function is just the area.

In general, this lets us define

vol(~v1, . . . , ~vn) = sign(det(
[
~v1, . . . , ~vn

]
)) |vol(~v1, . . . , ~vn)|,

where |vol(~v1, . . . , ~vn)| is the volume of the parallelepiped in Rn defined by the vectors
~v1, . . . , ~vn. One can similarly argue that vol is multilinear and alternating. Since
vol(ê1, . . . , ên) = 1, we see that vol = det. Thus, determinant gives signed volume.2

Proposition 13. Let P be the parallelepiped in Rn defined by the vectors ~v1, . . . , ~vn.
Consider the image TA(P ) for some invertible A ∈M(n, n). Then,

|vol(TA(P ))| = | det(A)||vol(P )|.

In particular, if det(A) = ±1, then TA(P ) and P have the same (unsigned) volume.

Proof. Notice that |vol(TA(P ))| = det(
[
TA(~v1), . . . , TA(~vn)

]
). Let B =

[
~v1, . . . , ~vn

]
,

then
[
TA(~v1), . . . , TA(~vn)

]
= AB by definition. Lastly, since | det(B)| = |vol(P )| and

det(AB) = det(A) det(B), we see that |vol(TA(P ))| = | det(A)||vol(P )|.

3.3 Orientation

If you are familiar with the right-hand rule in physics, you may have wondered if
something like it works in higher dimensions. For a list ~v1, . . . , ~vn ∈ Rn of n lin-
early independent vectors we define the orientation of ~v1, . . . , ~vn for be the sign of
det(

[
~v1, . . . , ~vn

]
). That is, ~v1, . . . , ~vn is positively oriented if det(

[
~v1, . . . , ~vn

]
) > 0

and negatively oriented otherwise. Notice, if you are given ~v1, . . . , ~vn−1 and need to
choose between ±~vn (e.g. to define a “canonical” direction of some potential or field),
then you can choose between ±~vn by forcing the determinant to be positive.

3.4 Trace

Another important invariant of a matrix is its trace.

Definition 5. The trace of an n× n matrix A denoted tr(A) is defined to be

tr(A) =
∑
i

aii.

2I am glossing over how one geometrically computes volume in Rn, but it is similar to how you
go from areas in R2 to volumes in R3.
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Proposition 14. Trace is a linear transformation from M(n, n) to R, i.e.

tr(kA) = k tr(A), tr(A+B) = tr(A) + tr(B).

Furthermore,
tr(AB) = tr(BA).

Proof. It is easy to check linearity. For the last property, we can see that the ith diag-
onal entry of AB is

∑n
j=1 aijbji. Similarly, the ith diagonal entry of BA is

∑n
j=1 bijaji.

tr(AB) =
n∑

i=1

(
n∑

j=1

aijbji

)
sum in diff. order

============
reorder mult.

n∑
j=1

(
n∑

i=1

bjiaij

)
relabel i↔j

========
n∑

i=1

(
n∑

j=1

bijaji

)
= tr(BA).
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