
MAT 307, Multivariable Calculus with Linear Algebra – Fall 2024

1 Gauss-Jordan Elimination

Recall that a solution to A~x = ~b means expressing ~b as a linear combination of the
column vectors ~vi of A, that is

A~x = x1~v1 + · · ·+ xn~vn = ~b.

Thus, a solution exists if and only if ~b ∈ span{~v1, . . . , ~vn}. Also recall that the rank

of a system of m linear equations in n unknowns, A~x = ~b, is the maximal number of
linearly independent rows in the augmented matrix [A | ~b ].

You should feel concerned about this definition. To compute the rank, you would
have to decide if every subcollection of rows is dependent or independent and then
find the largest linearly independent one. That’s a lot of work!

We will now devise an algorithm that help us to both compute the rank and to solve
the system of linear equations simultaneously.

Definition 1. Two linear systems are equivalent if they have the same solution set.

We wish reversible operations taking a system to an equivalent (simpler) system.

Example 1. Solve the system

eq1 :
eq2 :
eq3 :

x + 3y + z = 1
2x + 4y + 7z = 2
4x + 10y + 9z = 4

We will “modify” the equations in such a way as to simplify them while preserving
the solution set. Note, after each step below, we relabel the equations by order.

x + 3y + z = 1
2x + 4y + 7z = 2
4x + 10y + 9z = 4


eq1

eq2 − 2eq1
eq3 − 4eq1


−−−−−−−−−→

x + 3y + z = 1
0 − 2y + 5z = 0
0 − 2y + 5z = 0


eq1
eq2

eq3 − eq2


−−−−−−−−→

x + 3y + z = 1
0 − 2y + 5z = 0
0 + 0 + 0 = 0


2eq1
3eq2
eq3


−−−−−→

2x + 6y + 2z = 2
0 − 6y + 15z = 0
0 + 0 + 0 = 0


eq1 + eq2

eq2
eq3


−−−−−−−−→

2x + 0 + 17z = 2
0 − 6y + 15z = 0
0 + 0 + 0 = 0

=⇒

xy
z

 =

1− 17
2
z

5
2
z
z

 =

1
0
0

+ z

−17
2

5
2

1


1



Notice that the solution is a line in R3. The vector
[
1 0 0

]t
is called the translation

vector and
[
−17

2
5
2

1
]t

is called a spanning vector. Notice that z can be assigned
any real value to get a solution for the system.

The above operations are called elementary row operations and can be applied to
the matrix [A | ~b ] directly. Gauss-Jordan or Gaussian Elimination is a process
where successive elementary row operations bring the matrix into a (reduced)
row echelon form — we will define this shortly.

The elimination process consists of three reversible elementary row operations:

1. Swapping two rows.

2. Scaling a row (i.e. multiply a row by a non-zero scalar).

3. Adding a multiple of one row to another.

Proposition 1. Elementary row operations do not alter the solution set of the system.

Proof. Swapping two equations in a system does not change the solution set. Simi-
larly, eqi and a · eqi (for a 6= 0) define the same hyperplane, so scaling rows doesn’t
change the solution set. Lastly, let eqi and eqj are two different equations in the sys-
tem. Notice that any solution ~x to eqi and eqj is also a solution to eq′i = eqi + a · eqj
and eqj for any a ∈ R. Similarly, any solution ~x ′ to eq′i and eqj is also a solution to
eqi = eq′i − a · eqj and eqj for any a ∈ R. Thus, we are done.

The proof on the next theorem is rather technical and we omit it here.

Theorem 2. Elementary row operations do not alter the rank of a matrix.

Definition 2. A matrix R is in row echelon form if

• the first nonzero entry in any nonzero row occurs to the right of first such entry
in the row directly above it.

• all zero rows are grouped together at the bottom.

The first nonzero entry in a row is called a pivot. The column containing a pivot
is called a pivot column. If R represents a linear system, then the variable corre-
sponding to that entry is called a pivot variable.

Theorem 3. Every matrix is (row) equivalent to a matrix in echelon form.

Proof. (sketch) We can assume that the first column of A is nonzero because a zero
column does not affect elementary row operations. By swapping, it is possible to
make a11 6= 0. Then, by adding/subtracting multiples ~r1, we can make and ai1 = 0
for i > 1. Now, we apply the reduction method to the submatrix of A with first row
and first column removed and then to successively smaller submatrices of A. This
process is guaranteed to terminate and will give a matrix in row echelon form.

2



One caveat of row echelon form is that it is not unique. In particular, scaling a row
of a matrix in echelon form keeps it in echelon form. Similarly, subtracting a lower
from from an upper row still leaves the matrix in row echelon form. We define:

Definition 3. A matrix R is in reduced row echelon form when

1. R is in echelon form

2. all the pivots are 1.

3. all entries above (and below) the pivots are 0.

Example 2. 
0 1 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗


Theorem 4. Every matrix is (row) equivalent to exactly one matrix R in reduced
row echelon form.

Thus, we can define rref(C) = R for C ∈ M(m,n). The algorithm of Gauss-Jordan
elimination allows us to “efficiently” compute rref(C).

Exercise 1. Show that rank(rref(C)) is exactly the number of pivots.

Definition 4 (Better version). The number of pivots in rref(C) is called the rank

of C. If C = [A | ~b ] corresponds to a system A~x = ~b, then rref(C) is the rank of
the system and the variables corresponding to pivots are called pivot variables,
while the other variables are called non-pivot variables.

Corollary 1. The rank r(C) of an m× n matrix C must satisfy r(C) ≤ min(m,n).

Proof. The number of pivots in rref(C), which can only occur at most once in each
row or column, must be be less than or equal to both m and n.

Remark. This definition of rank is consistent with our previous definition (i.e. the
maximal number of linearly independent rows). Since elementary row operations do
not affect the (old) rank of a matrix by Theorem 2, rank(A) = rank(rref(A)).

Example 3. The pivot variables in Example 2 are x2, x3, x4, x6, the non-pivot vari-
ables are x1, x5, and the rank is 4.

Example 4. Consider the systems A~x = ~b with augmented matrices:

1.

[A | ~b ] =

0 1 2 2
1 −1 1 5
2 1 −1 −2
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2.

[A | ~b ] =

0 1 2 2
1 −1 1 5
2 −1 4 3


3.

[A | ~b ] =

0 1 2 2
1 −1 1 5
2 −1 4 12


Find the row reduced echelon form of [A | ~b ], determine the rank of rank(A) and

rank([A | ~b ]), and the number of the solutions to the system.

1. We successively apply elementary row operations to [A | ~b ]

0 1 2 2
1 −1 1 5
2 1 −1 −2



~r2
~r1
~r3


−−−→

1 −1 1 5
0 1 2 2
2 1 −1 −2




~r1
~r2

~r3 − 2~r1


−−−−−−−−→

1 −1 1 5
0 1 2 2
0 3 −3 −12



~r1
~r2
1
3~r3


−−−−→

1 −1 1 5
0 1 2 2
0 1 −1 −4




~r1
~r2

~r3 − ~r2


−−−−−−−→

1 −1 1 5
0 1 2 2
0 0 −3 −6




~r1
~r2
−1

3~r3


−−−−−−→

1 −1 1 5
0 1 2 2
0 0 1 2




~r1
~r2 − 2~r3

~r3


−−−−−−−−→

1 −1 1 5
0 1 0 −2
0 0 1 2



~r1 − ~r3

~r2
~r3


−−−−−−−→

1 −1 0 3
0 1 0 −2
0 0 1 2



~r1 + ~r2

~r2
~r3


−−−−−−−→

1 0 0 1
0 1 0 −2
0 0 1 2

 = rref([A | ~b ])

All three variables are pivot variables, there are no non-pivot varibles. There
is one solution: x = 1, y = −2, and z = 2. Also, rank(A) = 3 = rank([A | ~b ]).

2.

rref([A | ~b ]) =

1 0 3 0
0 1 2 0
0 0 0 1

 .

Here, x and y are pivot variables, z is a non-pivot variable. The system is
inconsistent because of the last row. Note, rank(A) = 2 and rank([A | ~b ]) = 3.

3.

rref(B) =

1 0 3 7
0 1 2 2
0 0 0 0

 .
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Here, x and y are pivot variables, z is a non-pivot variable. For z ∈ R, we havexy
z

 =

7
2
0

+ z

−3
−2
1

 .

Solution set is a line starting from [7, 2, 0]t (translation vector) in the direc-

tion [−3,−2, 1]t (spanning vector). Note, rank(A) = 2 and rank([A | ~b ]) = 2.

From the above examples, we see that a general solution to A~x = ~b has the form

~x = T + xj1X1 + · · ·+ xjkXk,

where xj1 , . . . , xjk are the non-pivot variables, T is the translation vector (ob-
tained by setting the non-pivot variables to zero), and X1, . . . , Xk are the spanning
vectors. We will see more on this in the next lecture.

Also, notice that you can choose any real number for the value of a non-pivot variable
and obtain a solution. For this reason, non-pivot variables are examples of free
valuable. We say that a variable xi is free if for every t ∈ R there exists a solution
of A~x = ~b such that xi = t.

Let r′ = rank(A) for the coefficient matrix A. Observe that

• r′ ≤ r as rref([A | ~b ]) is obtained from rref(A) by adding an extra column.

• r′ ≤ m and r ≤ m by Corollary 1.

• r′ ≤ n and r ≤ n + 1 by Corollary 1.

Proposition 5. Let A~x = ~b be a linear system with A ∈M(m,n). Then,

• If r′ < r, then there are no solutions (i.e. the system is inconsistent and ~b is
not in the span of the columns of A).

• If r′ = r < n, then there are infinitely many solutions.

• If r = r′ = n, then there is one solution and ~b is a unique linear combination
of the column vectors of A.

Proof. We do not prove it here, but the observation that rref([A | ~b ]) is obtained
from rref(A) by adding an extra column should make it clear.
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2 Row, Column, and Null Spaces

Recall that a real vector space is a set together with rules for addition and scalar
multiplication by real numbers so that the space is closed under taking linear combi-
nations. Addition is commutative, associative, and an additive identity and inverses
exist. Scalar multiplication is associative, distributive, and a scalar multiplicative
identity exists.

Some examples of vector spaces were:

• Rn

• A hyperplane in Rn

• M(n,m)

Many vector spaces are subspaces of other vector spaces.

Definition 5. A subsetW of a vector space V is called a subspace for any X, Y ∈ W
and s ∈ R one has X+Y ∈ W and sX ∈ W . We say thatW is closed under addition
and scalar multiplication.

Exercise 2. Show that W ⊂ V1 is a subspace if and only if sX + t Y ∈ W for any
X, Y ∈ W and s, t ∈ R.

We don’t need to check that all the vector space properties hold for W — they hold
for V , so the laws of addition and scalar multiplication are consistent in W .

The set {0} consisting of the zero element (i.e. the additive identity) of a vector space
V is a subspace of V called the trivial subspace. Some examples of subspace of the
respective vectors spaces enumerated above are:

• set of vectors in Rn whose first component is 0 — subspace of Rn

• set of matrices in M(m,m) with zeros on the diagonal — subspace of M(m,m)

Since we know that Rn,M(n,m) are vector spaces, all you have to check in the exercise
above is closure under addition and scalar multiplication.

Proposition 6. Show that span{X1, . . . , Xk} is a subspace of a vector space V where
Xi ∈ V for i = 1, . . . , k.

1The notation ⊂ mean “subset.” So “W ⊂ V is a subspace” reads as “the subset W of V is a
subspace.” In general, subsets are not subspaces.
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Proof. Let W = span{X1, . . . , Xk}. Elements A,B ∈ W can be written as A =∑k
i=1 aiXi and B =

∑k
i=1 bi Xi for real number ai, bi ∈ R. For any s, t ∈ R, we have

sA + t B =
k∑

i=1

s aiXi +
k∑

i=1

t biXi =
k∑

i=1

(s ai + t bi)Xi.

Since this is again a linear combination of Xi’s, it follows that sA + t B ∈ W . Thus,
W is a subspace of V .

2.1 Subspaces of Rm arising from systems

Definition 6. Let A be an m × n. Define the column space C(A) to be the span
of column vectors A. Define the row space R(A) to be the span of row vectors of
A. Lastly, define the nullspace N (A) to be the solution set of A~x = ~0.

Proposition 7. For A ∈M(m,n), the column space is a subspace of Rm and the row
space is a subspaces of Rn.

Proof. This follows from Proposition 6 as the column and row spaces are spans of
sets of vectors.

Proposition 8. For A ∈M(m,n), nullspace is a subspace of Rn.

Proof. We can prove this two ways. We could show that the nullspace must be the
span of spanning vectors of the system A~x = ~0 (see Theorem 10 below), so it is a
subspace by Proposition 6. A more nuanced way is to use the following augment.

Let N = {~x ∈ Rn | A~x = ~0} denote the nullspace. We must show that for every
~u, ~w ∈ N and s, t ∈ R we have that s~u + t~w ∈ N . Recall that

A~x = x1~v1 + · · ·+ xn~vn,

where ~vi are the column vectors of A. So,

A(s~u + t~w) = (su1 + tw1)~v1 + · · ·+ (sun + twn)~vn =

= s (u1~v1 + · · ·+ un~vn, ) + t (w1~v1 + · · ·+ wn~vn) =

= s (A~u) + t (A ~w) = s · 0 + t · 0 = 0.

Above, we heavily used the distributive property of vector spaces and the fact that
~u, ~w ∈ N . Since we just computed that A(s~u + t~w) = 0, it follows that s~u + t~v ∈ N .
Thus, N is a subspace (of Rn).

Let’s do a concrete example to help us understand the nullspace a little better.
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Example 5.

A =

1 2 3 0
2 4 6 0
3 2 1 −12

 , ~b =

 1
2
3

 .

rref([A | ~b ]) =

1 0 −1 −6 1
0 1 2 3 0
0 0 0 0 0

 .

The pivot variables are x1 and x2, and the non-pivot variables are x3 and x4. By
setting the non-pivot variables to 0, we get the solution ~xp = [1 0 0 0]t. We called ~xp

the translation vector (or particular solution) to the system A~x = ~b. Notice
that for any other solution ~xs, we have A(~xs−~xp) = ~0. Let ~xnull = ~xs−~xp, then ~xnull

lies in null space of A. Thus, ~xs = ~xp + ~xnull. Conversely, any choice of vector ~xnull

in the nullspace will give a solution ~xp + ~xnull. So, the general solution ~x is given by

~x = ~xp + ~xnull.

We call ~xnull a homogeneous solution. The system A~x = ~0, of which ~xnull is a
solution, is called the homogenous system corresponding to A~x = ~b.

Recall that each non-pivot variable has a corresponding spanning vector, which we
can compute from rref([A | ~b ]). The spanning vector for x3 is [1 − 2 1 0]t and for

x4 we have [6 − 3 0 1]t. Since every solution to A~x = ~b has the form (translation
vector) + (linear combination of spanning vectors), we see that N has to be spanned
by the spanning vectors. So, in this example, the nullspace is

N = span




1
−2
1
0

 ,


6
−3
0
1


 .

We can see that N is a “2-plane” in R4 and the solution set of A~x = ~b corresponds
to translating N by the translation vector ~xp = [1 0 0 0]t.

Proposition 9. A consistent system A~x = ~b has a unique solution if and only if
the nullspace of A is {~0}.

Proof. Since A is consistent, it has at least one solution ~x1. Let ~x2 be any other
solution. Then A(~x1 − ~x2) = A~x1 − A~x2 = ~b −~b = ~0, so ~x1 − ~x2 is in the nullspace
of A. Therefore, if the nullspace of A is ~0, then ~x1 − ~x2 = ~0, so ~x1 = ~x2 and there
can only be one solution. Conversely, if the null space of A is not {~0}, then it must
contain some vector ~xnull 6= ~0. However, this gives ~x3 = ~x1 + ~xnull as a solution to
A~x = ~b and ~x3 6= ~x1.

The behavior we see above happens in general:
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• ~xp is obtained by setting all the non-pivot variables to 0.

• the spanning vectors (i.e. the vectors whose coefficients are non-pivot variables)
span the nullspace of A.

Theorem 10. Let A be an m×n matrix. The spanning vectors of the system A~x = 0
span N (A) and are linearly independent.

Proof. Since the last column of rref([A | ~0 ]) is all zeros, we see that the translation
vector for the system A~x = ~0 is ~0. Let xj1 , . . . , xjk be the non-pivot variables of

rref([A | ~b ]). By setting xji = 1 and the other non-pivot variables to 0, we can
compute the spanning vector Xi for xji from the reduced row echelon form. We

obtain that a solution of rref([A | ~b ]), and therefore A~x = ~0 (since row reduction
preserves solution sets), must have the form

~x = xj1X1 + · · ·+ xjkXk.

Thus, we see that the null space of A is span{X1, . . . , Xk}.
It remains to show linear independence. Notice that the jthi entry of Xi is always 1,
since it corresponds to xji = 1. Additionally, the jthi entry of Xt for t 6= i is always 0.
Focusing on the entries corresponding to the non-pivot variables, we see that there
cannot be a nontrivial linear combination between the Xi’s.

2.2 Orthogonality in Rn

Definition 7. Recall that the dot product of ~u = [u1 u2 · · · un]t ∈ Rn and ~v =
[v1 v2 · · · vn]t ∈ Rn is

~u · ~v = ~u t ~v = [u1 u2 · · · un]


v1
v2
...
vn

 =
n∑

i=1

ui vi.

Recall the dot product is distributive over vector addition and scalar multiplication.

Note. The dot product is special to Rn, other vector spaces may not have one!

Definition 8. Suppose W is a subspace of Rn. We define the orthogonal comple-
ment of W by

W⊥ = {~u ∈ Rn | ~u · ~v = 0 for all ~v ∈ W}

Proposition 11. Let W be a subspace of Rn, then W⊥ is also subspace of Rn
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Proof. Let us check that W⊥ satisfies the definition of subspace. For ~u, ~w ∈ W⊥ and
a, b ∈ R, let ~y = a~u+ b~w. We must show that ~y ∈ W⊥. For any ~v ∈ W , we have that

~y · ~v = (a~u + b~w) · ~v dot prod.
=======
dist. prop.

a(~u · ~v) + b(~w · ~v) = a 0 + b 0 = 0.

Thus, ~y ∈ W by definition and W is a subspace of Rn.

Proposition 12. Let R be the row space of A and N its nullspace. Then,

N = R⊥

Proof. Let ~r1, · · · , ~rm be the rows of A. Since ~x ∈ N if and only if A~x = ~0, it follows
that ~x ∈ N if and only if ~ri · ~x = 0 for all i. Thus, ~x ∈ R⊥ if and only if ~x ∈ N .

We will show later that that R = N⊥ (i.e. (R⊥)⊥ = R)

2.3 Brief summary of the content so far

We have introduced the notions of vector space V and (several definitions of) linear
independence. The most useful one is that S = {X1, . . . , Xn} ⊂ V is linearly inde-
pendent if 0 = c1X1 + · · · + cnXn for some ci ∈ R implies that ci = 0 for all i. In
general, to test linear independence we turn the expression 0 = c1X1 + · · · + cnXn

into a linear system of equations A~x = ~0 where A ∈ M(m,n) and xi = ci are our
unknowns. The set S is then linearly independent if the only solution is ~x = ~0.

Our method for solving A~x = ~0 (and, more generally, A~x = ~b) is to use row reduction

to obtain a unique reduced row echelon form rref([A | ~b ]). Here, the pivots of rref([A |
~b ]) give us an easy way to (1) compute the rank, (2) analyze the number of solutions
and (3) show that the solution set has the form: (transition vector) + (span of
spanning vectors).

The span of the spanning vectors turned out to be the solution set of the homogenous
system A~x = ~0. This solution set, called the nullspace N (A), has the property that
it is a vector subspace of Rn. We introduced two other important vector subspaces:
the columns space C(A) ⊂ Rm and the row space R(A) ⊂ Rn. Lastly, we saw that
N (A) = R(A)⊥.

2.4 Basis

Previously, we showed that the spanning vectors of a linear system are linearly inde-
pendent. They form a special type of set called a basis of N (A).

Definition 9. A set S ⊂ V is a basis of vector space V if span(S) = V and S is
linearly independent.
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Example 6. S = {ê1, . . . , ên} is a (standard) basis for Rn.

Example 7. The spanning vectors for the system A~x = ~b are a basis for N (A).

Proposition 13. The pivot rows of rref(A) form a basis for R(A).

Proof. Since the rows of rref(A) are linear combinations of the rows of R(A) and vice
versa, we see that they have the same span2. Further, we known that the rows of
rref(A) are either pivot rows or all zero. Since zero rows don’t contribute to the span,
we can throw the out. Lastly, the pivot rows of rref(A) must be linearly independent
since each pivot appears in a column where all other entries are zero. Thus, they
form a basis for R(A).

We have a somewhat more difficult result about C(A).

Proposition 14. The columns of A corresponding to pivots (variables) of rref(A)
form a basis for C(A). There columns are called pivot columns of A.

Proof. Let ~v1, . . . , ~vn be the columns of A. First, we show that the pivot columns span
C(A). To do this, we need to show that all nonpivot columns are linear combinations
of the pivot columns. Let xa1 , . . . , xak be the nonpivot variables A and let xb1 , . . . , xbt

be the pivot variables of A. For a given i = 1, . . . , k, let ~c be a solution to A~x = ~0
such that xai = −1 and xaj = 0 for j 6= i3. Then,

~0 = A~c = −~vai +
t∑

j=1

cbj ~vbj ,

which means that the nonpivot column ~vai is a linear combination of pivot columns.
As we can do this for all i = 1, . . . , k, we see that C(A) = span{~vb1 , . . . , ~vbt}.
To show that {~vb1 , . . . , ~vbt} is linearly independent, notice that any expression

~0 = r1 ~vb1 + · · ·+ rt ~vbt

can be turned into a solution to A~x = 0 by letting xbj = rj for j = 1, . . . , t and
zero otherwise. However, this solution has all the nonpivot variables set to zero, but
the only such solution is, in fact, ~0. So rj = 0 for all j and {~vb1 , . . . , ~vbt} is linearly
independent. This means that the pivot columns of A are a basis for C(A).

Example 8. Let

A =

1 2 3 4 0
1 2 7 8 4
1 2 11 12 8

 =⇒ rref(A) =

1 2 0 1 −3
0 0 1 1 1
0 0 0 0 0

 .

2That is, any linear combination of rows of A can be turned into a linear combination of the rows
of rref(A) and vice versa.

3We can do this since the nonpivot variables are free.
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Then, 


−2
1
0
0
0

 ,


−1
0
−1
1
0

 ,


3
0
−1
0
1


 is a basis for N (A)

{[
1 2 0 1 −3

]
,
[
0 0 1 1

]}
is a basis for R(A)

1
1
1

 ,

 3
7
11

 is a basis for C(A)

Note that the nonpivot columns are linear combinations of the pivot columns. Also,
the basis vectors for N (A) are perpendicular to both basis vectors for R(A).

Let A be an m× n matrix. We just saw how to compute bases for R(A),N (A), and
C(A). Letting k = rank(A), we can summarize out findings as

Space Dimension Basis
R(A) k pivot row vectors of rref(A)
N (A) n− k spanning vectors computed from rref(A)
C(A) k columns of A corresponding to pivot columns of rref(A)

All that hard work from before pays off in making the following results clear.

Theorem 15. [Rank] For any matrix A, we have that dimR(A) = dim C(A) and this
dimension is rank(A).

Theorem 16. [Rank-Nullity] For A ∈M(m,n), define null(A) = dimN (A). Then,

rank(A) + null(A) = n.

The dimension of the nullspace null(A) is called the nullity of A.

Proposition 17. Let A be an m× n matrix, then

1. the columns of A are linearly independent if and only if null(A) = 0.

2. the columns of A are linearly independent if and only if rank(A) = n.

3. the rows of A are linearly independent if and only if rank(A) = m.

Recall that the transpose At of A is obtained by “flipping” A along the diagonal.
That is, we take the rows of A and make them the columns of At. Notice that the
columns of A become rows of At. In particular, we see that R(At) = C(A) and
C(At) = R(A). From this, it is clear that

Proposition 18. Let A be an m× n matrix, then rank(At) = rank(A).
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