Vectors: What is a vector? We can consider a vector as a segment with an arrow on one end: k 7 8 The arrow is to show what is the origin, say point A, and what is the tip, say point B. We can thus approximatly define a vector as an object having length (or magnitude) and director. Two vectors AB and CD are equal if and only if the figure ABDC is a parallelogram: _B A 7 B 7 B 7 B 7 C This means that they have equal lengths, are parallel and have the same direction.

IF: In this case ABPC is D 4 C not a parellologram A and AB and DC are nuti-parakel. To describe vectors (which have no spectical location) we may fix a point of as the origin and count all the vectors from this point. $d_{A} = d$ vector notations:

to distinguish, e.g. from scalars a, b, c, d, \dots $\bar{a}, \bar{b}, \bar{c}, \bar{d}, \dots$ $\bar{a}, \bar{b}, \bar{c}, \bar{d}, \dots$ $\bar{a}, \bar{b}, \bar{c}, \bar{d}, \dots$

Sume examples: 1) Position vector. position vector of the point Å (relative to O). how much and in which direction D z) Displacement Vector was shifted 3) Velocity Vector Valocity vector. 4) Force vector: force applied to a body M F eig gravity force

•

lectur operations
1) Addition;
$$\vec{a} + \vec{b}$$

Def 1: complete to \vec{b}
publiclogram
diagond weeter $\vec{c} = \vec{a} + \vec{b}$ (by definition)
Det 2: take \vec{a} and drow \vec{b} starting
from tip of \vec{a} :
Hind side of triayte
 $\vec{c} = \vec{c} + \vec{b}$.
Since \vec{c} \vec{b} is held of \vec{b}
The definitions are equivalent.
However, they make different as pech of vector
addition conceptually clear.

Properties of vector addition: a) for any two a, b, atbilder (commutative) Pf: Obviou, trom parallelogram rale ot a and b. nut hurd tu ser frum triangle rule, but duiouis Jum purallelugram rule. 7,6,2: b) For three nectors $= \frac{7}{9} + (\frac{7}{5} + \frac{7}{c})$ (a+b)+c Pf: tringle rule: $\vec{e} = \vec{a} + \vec{c}$ $\vec{e} = \vec{a} + \vec{c}$ $\vec{e} = \vec{a} + \vec{c}$ $\vec{e} = \vec{a} + \vec{c}$ These two properties allow to detine sum of arbitrary namber of vectors. ig arbitrary order. b We may omit parantheses and add

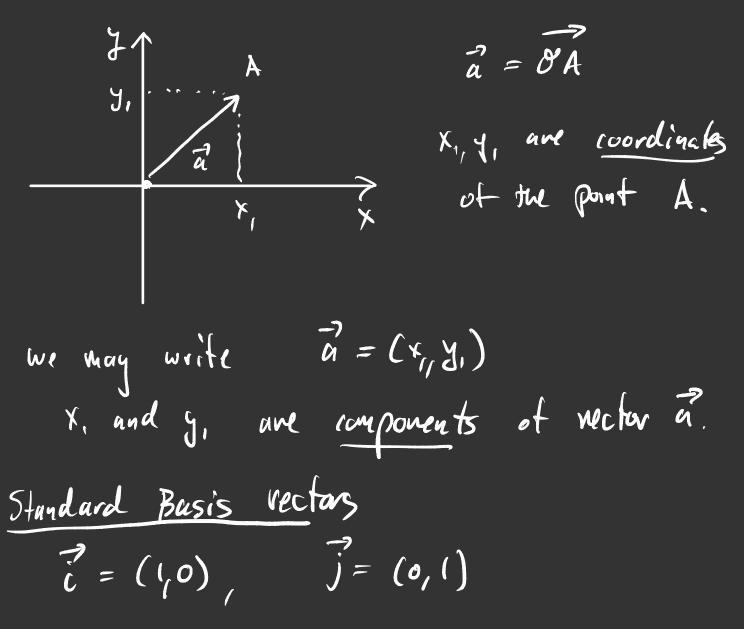
Subtraction:
Def:
$$\vec{a} - \vec{b} =: \vec{c}$$
 is a vector such that $\vec{b} + \vec{c} = \vec{a}$.
How to find \vec{c} ?
 \vec{c} \vec{c}

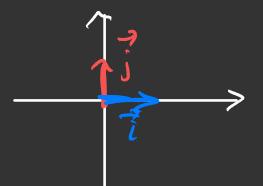
2evo vector: $\vec{O} = \vec{A}\vec{A}$ no definite direction $Pet: \vec{O} \cdot \vec{a} = \vec{O}$ for any vector \vec{a} .

Properties of Scalar Malfiplication	
a)	$k(\vec{a}+\vec{b}) = k\vec{a}+k\vec{b}$ (distributive)
6)	$(k_1 + k_2)\vec{a} = k_1\vec{a} + k_2\vec{a}$
c)	$(k; k_2)\vec{a} = k_1(k_2\vec{a}) = k_2(k_1a)$
d)	$0\ddot{a}=\ddot{0}$
e)	a - b = a + (-1)b

All are straightforward to prove.

In order to make some calculations we must introduce courdinate representation of rectors.





$$\vec{a} = (x_{1}, x_{1}), \quad \vec{b} = (x_{2}, y_{2}), \quad \text{then}$$

$$\vec{a} + \vec{b} = (x_{1} + x_{2}, y_{1} + y_{2}) \qquad \text{vector opention}$$

$$\vec{a} - \vec{b} = (x_{1} - x_{2}, y_{1} - y_{2}) \qquad \text{vector opention}$$

$$\vec{k} = (x_{1}, y_{1})$$

$$\vec{a} = (x_{1}, y) \qquad \vec{a}$$

$$\vec{k} = (x_{1}, y) \qquad \vec{a}$$

$$\vec{a}$$

Dot product: product of vector and vector

$$\vec{a} = (a_1, a_2)$$
 $\vec{b} = (b_1, b_2)$ (a_1, a_2, a_3) $\vec{b} = (b_1, b_2, b_3)$
Def: Dot product (inna product) is
 $\vec{a} \cdot \vec{b} := a_1 b_1 + a_2 b_2$ $(a_1, 2b_1)$ $\vec{b} = a_1 b_1 + a_2 b_2$ $(a_1, 2b_2)$
 $\vec{a} \cdot \vec{b} := a_1 b_1 + a_2 b_2$ $(a_1, 2b_2)$ $\vec{b} = 3D$
 $\vec{a} \cdot \vec{b} := a_1 b_1 + a_2 b_2$ $(a_1, 2b_2)$ $\vec{b} = 3D$
Properties: (Product)
 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$ (Obvious from definitors)
 \vec{b} $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ (write in reconcording
 $\vec{c} \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ (write in reconcording
 $\vec{c} \cdot \vec{c} = a_1 \cdot \vec{c} + \vec{b} \cdot \vec{c}$ (write in reconcording
 $\vec{c} \cdot (k \cdot \vec{a}) \cdot \vec{b} = k (\vec{a} \cdot \vec{b})$
 $\vec{d} = \vec{a} \cdot \vec{a} = \|q_1\|^2$ (from definitions)
 \vec{e} $\vec{c} \cdot \vec{c} = \|\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} - \vec{c} + \vec{c} \cdot \vec{c} + \vec{c} \cdot \vec{c} + \vec{c$

First nontrivial theorem: geometrical precising
Theorem: Suppose
$$a_1 b \in \mathbb{R}^2$$
 or \mathbb{R}^3 . Let φ be
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$ or \mathbb{R}^3 . Let φ be
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$ or \mathbb{R}^3 . Let φ be
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$ or \mathbb{R}^3 . Let φ be
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$ or \mathbb{R}^3 . Let φ be
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$.
Note $f_{12} = \mathbb{R}^2$ or \mathbb{R}^2 or \mathbb{R}^2 or \mathbb{R}^2
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2$.
Note $f_{12} = \mathbb{R}^2$ or \mathbb{R}^2 or \mathbb{R}^2 or \mathbb{R}^2 or \mathbb{R}^2
 $\frac{1}{2}$.
Proof: Dreate $\mathcal{E} = \overline{a} - \overline{b}$.
 $\frac{1}{2} \int_{\mathbb{R}^2} f_{12} = \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2 + \mathbb{R}^2$.
 $\mathbb{R}^2 = \mathbb{R}^2$.
 \mathbb{R}^2 .
 \mathbb

Angle between two vectors

$$\overrightarrow{a} \cdot \overrightarrow{b} = \|a\| \|b\| \cos \varphi$$

 $\overrightarrow{cos} \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|a\|} \|b\||$
 $\overleftrightarrow{cos} \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|a\|} \|b\||$
 $\overleftrightarrow{cos} \varphi = \operatorname{arc} \cos \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|a\|}\right)$
 $\operatorname{Such} \alpha \varphi \text{ is necessarily } 0 \le \varphi \le \pi$.
 $\operatorname{Example}: \overrightarrow{a} = (1, 2, 3) \quad \overrightarrow{b} = (3, -1, 4)$
 $\overrightarrow{a} \cdot \overrightarrow{b} = 3 - 2 + 12 = 13$
 $\|a\| = \sqrt{1 + 4 + 9} = \sqrt{14}$
 $\|b\| = \sqrt{9 + 1 + 1b} = \sqrt{26}$
 $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|a\|} = \frac{13}{\sqrt{14} \cdot 26} = 0.681$
 $\varphi = \operatorname{arc} \cos(0.681) = 0.821$ radius
 $= 47.05^{\circ}$

Components of a vector

 $\vec{a} = (a_1, a_2)$ $a_1 = \vec{a} \cdot \vec{i}$ $a_2 = \vec{a} \cdot \vec{j}$ $\vec{j} = \vec{a} \cdot \vec{j}$ (components given by dot products)We can also consider 2 and 2 with Nüll=1. $Compa = \overline{a} \cdot \overline{u}$ (component of $\overline{a} \cdot \overline{u}$) move generally for any 2,5, then $\widehat{\mathcal{U}} = \frac{1}{||\widehat{\mathcal{U}}||}$ $\frac{1}{2}$ $Compa = \vec{a} \cdot \vec{k} = \frac{\vec{a} \cdot \vec{b}}{||\vec{b}||}$

Projection of
$$\vec{a}$$
 on direction of \vec{B}
 \vec{a}
 \vec{a}

For example
$$\vec{a} = (1,2)$$
 $\vec{b} = (3,4)$
 $\vec{f}_{roj} \vec{b}$ $P_{roj} \vec{b} = \frac{3+8}{9+(6)}(3,4)$
 $= \frac{11}{25}(3,4)$
 $= (\frac{33}{25}, \frac{44}{25})$

All formulas work in any dimension.