
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 7

(1) Find the point on x2 − z2 = 1 closest to the origin.

Solution: x2 − z2 = 1 is a hyperbolic cylinder. Minimize f(x, y, z) = x2 + y2 + z2 =
x2 + y2 +x2− 1, ∇f(x, y) = (0, 0) implies x = y = 0 and z2 = −1, not possible. Method
fails in this case!
But use Lagrange multiplier,

f(x, y, z) = x2 + y2 + z2, g(x, y, z) = x2 − z2 = 1

∇f = λ∇g, y = 0, x = λx, z = −λz
λ = 1, z = 0, x = ±1

(±1, 0, 0) are the solutions. Geometric considerations show that they are the minimum
solutions for f . In fact, let f(x, y, z) = z2 + 1 + y2 + z2, the unconstrained optimization
method will work.

(2) Prove that the arithmetic mean is always greater than or equal to the geometric mean:

(x1x2 · · ·xn)1/n ≤ x1 + x2 + · · ·+ xn
n

where xi ≥ 0. Hint: Maximize f(y1, · · · , yn) = y1 · · · yn subject to g(y1, · · · , yn) =
y1 + · · ·+ yn = 1 where yi ≥ 0.

Solution: Maximize f(y1, · · · , yn) = y1 · · · yn subject to g(y1, · · · , yn) = y1+· · ·+yn = 1
where yi ≥ 0. Let p = y1 · · · yn.

∇f(~y) = λ∇g(~y), g(~y) = 1

We find that
p

yi
= λ ∀i, yi =

1

n
.

p ≤ (1/n)n. Thus

p = y1 · · · yn ≤
(

1

n

)n
(y1 · · · yn)1/n ≤ 1

n
=
y1 + · · ·+ yn

n

Note that
(
1
n

)n
is max for f , as the domain is compact, and f must attain its min and

max. On the boundary of the domain, f(~y) = 0 are the minimums. At the “center”, it
is maximum. Now set

yi =
xi∑n
i=1 xi

=
xi
s
, s =

n∑
i=1

xi

(y1 · · · yn)1/n =
(x1 · · ·xn

sn

)1/n
≤ y1 + · · ·+ yn

n
=
x1 + · · ·xn

sn

(x1x2 · · ·xn)1/n ≤ x1 + x2 + · · ·+ xn
n

(3) A light ray travels from point A to point B crossing a boundary between two media (say
the interface is along {y = 0}). In the first medium its speed is v1, and in the second it
is v2. Show that the trip is made in minimum time when Snell’s law holds:

sin θ1
v1

=
sin θ2
v2

1



2

Solution: Single-Variable Unconstrained Optimization Method: Assume points A and
B are distance a, b from the medium divider, and A,B are 1 unit apart horizontally.

sin θ1 =
c√

a2 + c2
, sin θ2 =

1− c√
b2 + (1− c)2

The time it takes for light to travel is

f(c) =

√
a2 + c2

v1
+

√
b2 + (1− c)2

v2

f ′(c) =
c

v1
√
a2 + c2

− 1− c
v2
√
b2 + (1− c)2

= 0

implies
sin θ1
v1

=
sin θ2
v2

To verify that Snell’s law gives the global minimum, check that

f ′′(c) =
a2

v1(a2 + c2)3/2
+

b2

v2(b2 + (1− c)2)3/2
> 0.

f(c) is a function that concaves up and has only one critical point, so minimum can not
occur at boundary, c is a local min and global min for f .

(4) Find the shortest distances between the points of the line x + y = 8 and the ellipse
x2 + 2y2 = 6. Hint: Pick a point (u, v) on the line and a point (x, y) on the ellipse, and
minimize the distance between the two points.

Solution: Let f(x, y, u, v) = (x− u)2 + (y − v)2, minimize f subject to the constraints
g1(x, y) = x2 + 2y2 = 6 and g2(u, v) = u + v = 8. Lagrange multiplier method shows
that

2(x− u) = λ12x, 2(y − v) = λ14y, −2(x− u) = λ2, −2(y − v) = λ2.

We have x− u = y − v and hence x = 2y. g1 implies that y = ±1.
When y = 1, we have x = 2, and u − v = 1, so g2 implies u = 4.5 and v = 3.5. The

distance between (x, y) and (u, v) is 5
2

√
2.

When y = −1, x = −2, u − v = −1, so u = 3.5 and v = 4.5. The distance between
the two points is 11

2

√
2.

The global min is 5
2

√
2 since the distance between the line and ellipse goes to infinity

at extreme ends of the line.
Alternatively, use the fact that the shortest distance must be realized by a segment

normal to the line x + y = 8. So need to find points on the ellipse where the gradient
(2x, 4y) is parallel to the normal given by (1, 1), so x = 2y, and y = ±1.

(5) A die shows k with probability pk for k = 1, 2, · · · , 6. Consider the vector ~p = (p1, p2, p3, p4, p5, p6),

where
∑6

i=1 pi = 1. The entropy of the die is defined as

f(~p) = −
6∑
i=1

pi log pi

Find the distributions ~p that minimizes and maximizes the entropy.

Solution:

g(~p) =

6∑
i=1

pi = 1

∇f = (−1− log p1, · · · ,−1− log p6), ∇g = (1, 1, · · · 1)

∇f = λ∇g
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pi = e−(λ+1), 1 =

6∑
i=1

exp(−(λ+ 1))

λ = − log(1/6)− 1, pi = 1/6

The fair dice has maximal entropy, and least information content.

f(1/6, 1/6, · · · , 1/6) = −6
1

6
log

1

6
= log 6 > 0

Note again that pi ∈ [0, 1], and f attains global min/max on the closed and bounded
region.
f(~p) ≥ 0 as log pi ≤ 0 for all i. f attains global min when pi = 1 for some i and pj = 0
for j 6= i. Use L’Hôpital’s Rule,

lim
h→0

h log h = lim
h→0

log h

1/h
= lim

h→0

1/h

−1/h2
= lim

h→0
h = 0

On the boundary, where 1 ≤ a < 6 of the pi’s sum to 1, while the other 6− a pj ’s are 0.
WLOG, assume

g1(p1, · · · , p6) = p1 + · · ·+ pa = 1, g2(p1, · · · , p6) = pa+1 + · · ·+ p6 = 0

∇f = λ1∇g1 + λ2∇g2 = λ1(1, · · · , 1, 0, · · · , 0) + λ2(0, · · · , 0, 1, · · · , 1)

∇f = (λ1, · · · , λ1, λ2, · · · , λ2)
where there are a λ1’s and 6− a λ2’s.

pi = e−(λi+1), 1 =

a∑
i=1

exp(−(λ1 + 1)) = aexp(−(λ1 + 1))

λ1 = log a− 1, p1 = · · · = pa =
1

a
pa+1, · · · , p6 must all be 0, as the pi ≥ 0 and pa+1 + · · · + p6 = 0. We again find the
Lagrange multiplier solution to be

f(
1

a
, · · · , 1

a
, 0, · · · 0) = log a

Hence, log 6 is a global max.
Indeed, when each pi = 1

6 , the dice is most random; when one pi = 1 and the rest 0,
there is no randomness at all.

(Extra) 1 Marsden & Tromba: §3.2 #6, 9; §3.3 #12, 23, 29, 42; §3.4 #4, 12, 30.

1Not to appear on quiz.


