Celestial Mechanics and Kepler's laws

Theorem 1. (Newton) Let G be the gravitational constant, m be the mass of the planet under consideration, and M be the mass of the sun. The motion of planet described by position vector (relative to the sun) is $\vec{r}(t)$ is governed by Newton's law of gravitation

$$m\vec{r}''(t) = -\frac{GMm}{\|\vec{r}\|^3}\vec{r}(t).$$

Then the orbit of the planet, traced out by $\vec{r}(t)$, is a conic section.

You will prove this Theorem and more if you show:

- (1) Show conservation energy. Namely, show $E = \frac{m}{2} ||\vec{v}||^2 \frac{GMm}{||\vec{r}||}$ is a constant of motion.
- (2) Deduce from conservation of energy that, provided $E_0 := \frac{m}{2} \|\vec{v}(0)\|^2 \frac{GMm}{\|\vec{r}(0)\|} < 0$, the planet's orbit $\vec{r}(t)$ is bounded for all time. In fact, show that $\|\vec{r}(t)\| \leq \frac{GMm}{|E_0|}$.
- (3) Show conservation angular momentum. Namely, $\vec{L} = \vec{r} \times \vec{v}$ is a constant of motion. Argue that the the motion is confined for all time to the plane $\Pi_{\vec{L}}$ that passes through the origin and is orthogonal to \vec{L} .
- (4) The above is equivalent to Kepler's second law: "The line segment from the sun to the planet sweeps out equal areas in equal times." That is, the vector $\vec{r}(t)$ sweeps out area A(t) in the plane $\Pi_{\vec{L}}$ at a constant rate. Explain why by proving $A'(t) = \frac{1}{2} ||\vec{L}||$.
- (5) Prove conservation of the Laplace–Runge–Lenz vector $\vec{d} := \vec{v} \times \vec{L} GM \frac{\vec{r}}{\|r\|}$.
- (6) Argue that \vec{d} is in the plane spanned by \vec{r} and \vec{v} .
- (7) Let θ be the angle between \vec{d} and $\vec{r}/\|\vec{r}\|$. Let $L=\|\vec{L}\|$ and $d=\|\vec{d}\|$, then

$$||r|| = \frac{p}{1 + e\cos\theta}, \qquad p = \frac{L^2}{GM}, \qquad e = \frac{d}{GM}.$$

(8) Rotating the plane containing \vec{v} and \vec{r} so that \vec{d} coincides with the positive x-axis. Show the result of (c), in Cartesian coordinates $x = r \sin \theta$, $y = r \cos \theta$, is

$$(1 - e^2)x^2 + 2pex + y^2 = p^2.$$

Show that the curve $\{(x,y)\in\mathbb{R}^2\mid (1-e^2)x^2+2pex+y^2=p^2\}$ is an

- ellipse if |e| < 1,
- parabola if |e| = 1,
- hyperbola if |e| > 1.
- (9) Prove Kepler's third law for elliptical orbits: "The square of the period is proportional to the cube of the major axis of the ellipse."

1

¹This worksheet will not be guizzed. It is just extra material for the interested student.