
MAT 307, Multivariable Calculus with Linear Algebra – Fall 2024

1 Lagrange Multipliers

We give the geometric picture of Lagrange Multipliers, in the simplest setting.

We seek to minimize f : Rn → R subject to the constraint g : Rn → R, where
x ∈ Rn. From the figure, we can see that if x∗ is a minimum of f subject to
g = 0, then the level sets of f and g passing through x∗ are tangent at x∗. Thus
∇f and ∇g are parallel at x∗, e.g. there is a λ ∈ Rn so that ∇(f −λg) = 0 at x∗.

Let use argue this more careful. Consider any curve ~r(s) lying on the surface
g = 0, with ~r(0) = x∗. Differentiating g(~r(s)) = 0 in s, we find

0 =
d

ds
g(~r(s))

∣∣∣
s=0

= ~̇r(0) · ∇g(x∗)

Here, ~̇r(0) can be any vector which is tangent to the surface g = 0 at the point
x∗. As such, it shows that ∇g(x∗) is normal to the surface g = 0 at x∗. On the
other hand, since x∗ is a critical point, we have also that

0 =
d

ds
f(~r(s))

∣∣∣
s=0

= ~̇r(0) · ∇f(x∗).

This shows that ∇f(x∗) is likewise normal to the surface g = 0 at x∗. Since
there is a unique normal direction to a surface of codimension 11, this shows that
∇f(x∗) = λ∇g(x∗).

Physical Interpretation: Lagrange’s theorem that ∇f(x∗) = λ∇g(x∗) is
the statement that a particle in a force field constrained frictionlessly to a surface

1We require the simple result: let ~a,~b,~v be vectors in Rn with ~b 6= 0 and are such that if
~b · ~v = 0 then ~a · ~v = 0. Then a = λb for some λ ∈ R. Proof: consider a decomposition of ~a as
~a = λb+ r with λ ∈ R and ~r ·~b = 0. Since ~b ·~r = 0, we have ~a ·~r = 0 by hypothesis. Taking the
dot product with ~r shows ~a · ~r = ‖~r‖2. Thus ~r = 0.
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is in equilibrium if and only if the force field is perpendicular to the surface.
Indeed, interpret f as the potential energy of a particle in a force field ~F = −∇f
in Rn. The particle is constrained to the surface g = 0. If the potential energy
f restricted to g = 0 is minimal at x∗, then x∗ is an equilibrium, i.e., the field
force ~F is balanced by reaction force ~R of the constraint. And since ~R is normal
to the surface, we have ~R = λ∇g for some λ ∈ R.

We begin with an application to linear algebra 2. We have the

Theorem 1. Let M be a real symmetric n × n matrix. Critical points of the
quadratic form f(~x) = (A~x, ~x) restricted to the unit sphere |~x|2 = 1 are eigenvec-
tors of M . Moreover, the critical values are the eigenvalues.

Proof. We use Lagrange multipliers, where f(~x) = (A~x, ~x) and g(~x) = ‖~x‖2.
Note that ∇f(~x) = A~x and ∇g(~x) = ~x. We conclude that ~v is a critical point of
f(~x) subject to the constraint g = 1 if and only if, for some λ ∈ R we have

A~v = λ~v.

Moreover, the critical value is (A~v,~v) = (λ~v,~v) = λ.

As such, we have the formulae

λmin = min
~y 6=0

(A~y, ~y)

(~y, ~y)
, λmax = max

~y 6=0

(A~y, ~y)

(~y, ~y)
.

This goes by the name Rayleigh Ritz theorem, and (A~y,~y)
(~y,~y)

the Rayleigh quotient.
The next largest eigenvalue can be obtained by similar formulae, if the maximum
is taken among all vectors orthogonal to the eigenvector corresponding to the
maximum eigenvalue. This continues, replacing the single eigenvector with the
span of the eigenvectors corresponding to of the bigger eigenvalues. There is an

2This is technically outside the scope of the class. I include it because it is a nice application
of Lagrange multipliers to an important theorem. This proof (and the pictures) is due to Mark
Levi and can be found in his book Classical Mechanics with Calculus of Variations and Optimal
Control.
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improvement of this procedure that does not require knowledge of the higher
eigenspaces called the Courant-Fischer Minimax Theorem.

When we have constraint equations and constraint inequalities such as

• Find min of f(x, y) = x2 − 2xy subject to the constraint inequalities x ≥
1, y ≥ 1: this is standard min/max problem with boundaries and infinity
to check.

• Find min of f(x, y, z) = x2 + y2 + z2 subject to the constraint equation
3x+5y+z = 9: can eliminate z to find min of F (x, y) = x2+y2+(9−3x−5y)2

with no constraint equation.

• Find min of f(x, y) = x2 + y2 subject to the constraint equation ex+y =
xy + 2: can’t eliminate a variable, so must use Lagrange multipliers.

Example 1. Find the min and max of f(x, y) = (x − 1)2 + y2 on the curve
g(x, y) = x3 − y2 = 0 where x ≥ 0. Set ∇f = λ∇g, we have

2x− 2 = 3λx2, 2y = −2λy.

Either y = 0, so x3 = y2 = 0, but 2x− 2 = −2 6= 0. So λ = −1, and local (global

min) of f at x = −1+
√
7

3
, y = ±

√(
−1+

√
7

3

)3
. Note that ∇g(0, 0) = ~0, and f

attains a local max at (0, 0) from geometric picture. But the Lagrange multiplier
method does not find this local extrema. The global max of f doesn’t exist.

Caveat: In Lagrange multiplier method, we need that ∇g 6= ~0. Technically,
∇g(0, 0) is parallel to ∇f(0, 0) but no λ exists such that ∇f = λ∇g at (0, 0).
When the two gradients are parallel, we can also have λ∇f = ∇g, with λ = 0.
So when the constraint g is not a smooth curve, one should check the point where
∇g = ~0.

The value the Lagrange multiplier λ attains at an optimum solution of f
subject to the constraint g = c is the rate of change of f with respect to the
constraint variable c:

df

dc
= λ

Since at the optimal solution ~x(c), g(~x(c)) = c,

dg

dc
= ∇g(~x(c)) · ~x′(c) = 1,

df

dc
= ∇f(~x(c)) · ~x′(c) = λ∇g(~x(c)) · ~x′(c) = λ.

In economics, λ is known as the shadow price for the constraint - it represents
the value of the resource (constraint).

To optimize f subject to multiple constraints g1 = c1, . . . , gk = ck, let S be the
(n− k)-dimensional intersection of the k hypersurfaces Si, level surface of gi = ci
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for i = 1, · · · , k. Suppose that ∇gi’s are linearly independent everywhere on S.
Any vector tangent to S must be tangent to each Si, and hence perpendicular
to each ∇gi. Each ∇gi is perpendicular to the intersection S. If f attains an
extremum at P ∈ S, ∇f must be perpendicular to all vectors tangent to S at P .
So ∇f is in the k-dimensional space spanned by the normal vectors to Si’s at P .
It follows from linear algebra that

∇f = λ1∇g1 + · · ·+ λk∇gk

for some constants λ, . . . , λk.

Remark. Vector ~v1, · · · , ~vk are linearly independent if a1~v1 +a2~v2 + · · ·+ak~vk = ~0
if and only if a1 = a2 = · · · = ak = 0.

Example 2. Find the closest point to the origin which belongs to the cone

x2 + y2 = z2

and to the plane
x+ y + z = 2.

We need to minimize f(x, y, z) = x2+y2+z2 subject to g1(x, y, z) = x2+y2−z2 =
0 and g2(x, y, z) = x+ y + z − 2 = 0.

We introduce λ1 and λ2, where

∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z).

2x = 2λ1x+ λ2, 2y = 2λ1y + λ2, 2z = −2λ1z + λ2, x
2 + y2 = z2, x+ y + z = 2.

From the first two coordinates, we get (x− y) = λ1(x− y).
If x 6= y then λ1 = 1 and λ2 = 0; from which we get z = 0 and x = y = 0, a
contradiction.
If x = y, we get z = ±

√
2x.

(2±
√

2)x = 2.

The critical points are

P1 = (2−
√

2, 2−
√

2,
√

2(2−
√

2)), P2 = (2 +
√

2, 2 +
√

2,−
√

2(2 +
√

2)).

The geometry of the surfaces show that P1 and P2 are both local min. P1 is
closer to the origin than P2.

To show that P1 is closest to the origin on the whole set

D = {(x, y, z) ∈ R3 | x2 + y2 = z2, x+ y + z = 2}.

Let
K = {(x, y, z) ∈ F | x2 + y2 + z2 ≤ 25},
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K is compact, so f attains min somewhere in K, and so it must attain the min
at the point P1. Since f ≥ 25 on outside of K on D, P1 is the global min for f
on F , f(P1) = 4(2−

√
2)2.

D is unbounded, so f has no global max. Also note that z = 2 − x − y,
x2 + y2 = (2− x− y)2,

2(x+ y) = 2 + xy, y =
2(x− 1)

x− 2
, z = 2− x− y

As x→ 2, y → ±∞, z → ∓∞.
Alternatively, note that on the cone z = ±r, and on the plane r(cos θ +

sin θ± 1) = 2. To optimize x2 + y2 + z2 = r2 + z2 = 2r2, we just need to optimize
r = 2

cos θ+sin θ±1 . Taking dr
dθ

we have tan θ = 1, so θ = π/4, 5π/4, where x = y.
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