Welcome to the preprint server of the Institute for Mathematical Sciences at Stony Brook University.

The IMS preprints are also available from the mathematics section of the arXiv e-print server, which offers them in several additional formats. To find the IMS preprints at the arXiv, search for Stony Brook IMS in the report name.
 

PREPRINTS IN THIS SERIES, IN PDF FORMAT.
* Starred papers have appeared in the journal cited.


M. Lyubich and S. Merenkov
Quasisymmetries of the basilica and the Thompson group
Abstract:
We give a description of the group of all quasisymmetric self-maps of the Julia set of $f(z)=z^2-1$ that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.
ims16-05
Araceli Bonifant, John Milnor
On Real and Complex Cubic Curves
Abstract:

An expository description of smooth cubic curves in the real or complex projective plane.

arXiv:1603.09018v2

P. Hazard, M. Martens and C. Tresser
Infinitely Many Moduli of Stability at the Dissipative Boundary of Chaos
Abstract:

In the family of area-contracting Henon-like maps with zero topological entropy we show that there are maps with infinitely many moduli of stability. Thus one cannot find all the possible topological types for non-chaotic area-contracting Hénon-like maps in a family with finitely many parameters. A similar result, but for the chaotic maps in the family, became part of the folklore a short time after Hénon used such maps to produce what was soon conjectured to be the first non-hyperbolic strange attractors in $\mathbb{R}^2$. Our proof uses recent results about infinitely renormalisable area-contracting Hénon-like maps; it suggests that the number of parameters needed to represent all possible topological types for area-contracting Hénon-like maps whose sets of periods of their periodic orbits are finite (and in particular are equal to $\{1,\, 2,\dots,\,2^{n-1}\}$ or an initial segment of this n-tuple) increases with the number of periods. In comparison, among $C^k$-embeddings of the 2-disk with $k>0$, the maximal moduli number for non-chaotic but non area-contracting maps in the interior of the set of zero-entropy is infinite.

A. Bonifant, X. Buff and J. Milnor
Antipode Preserving Cubic Maps: the Fjord Theorem
Abstract:
This note will study a family of cubic rational maps which carry antipodal points of the Riemann sphere to antipodal points. We focus particularly on the fjords, which are part of the central hyperbolic component but stretch out to infinity. These serve to decompose the parameter plane into subsets, each of which is characterized by a corresponding rotation number.
M. Arfeux
Reading escaping trees from Hubbard trees in $\mathcal{S}_n$
Abstract:

We prove that the parameter space of monic centered cubic polynomials with a critical point of exact period n = 4 is connected. The techniques developed for this proof work for every n and provide an interesting relation between escaping trees of DeMarco-McMullen and Hubbard trees.

P. Guarino, M. Martens, and W. de Melo
Rigidity of critical circle maps
Abstract:

We prove that any two $C^4$ critical circle maps with the same irrational rotation number and the same odd criticality are conjugate to each other by a $C^1$ circle diffeomorphism. The conjugacy is $C^{1+\alpha}$ for Lebesgue almost every rotation number.

B. Winckler and M. Martens
Physical Measures for Infinitely Renormalizable Lorenz Maps
Abstract:

A physical measure on the attractor of a system describes the statistical behavior of typical orbits. An example occurs in unimodal dynamics. Namely, all infinitely renormalizable unimodal maps have a physical measure. For Lorenz dynamics, even in the simple case of infinitely renormalizable systems, the existence of physical measures is more delicate. In this article we construct examples of infinitely renormalizable Lorenz maps which do not have a physical measure. A priori bounds on the geometry play a crucial role in (unimodal) dynamics. There are infinitely renormalizable Lorenz maps which do not have a priori bounds. This phenomenon is related to the position of the critical point of the consecutive renormalizations. The crucial technical ingredient used to obtain these examples without a physical measure, is the control of the position of these critical points.

ims15-06
Hiroyuki Inou, Sabyasachi Mukherjee
Non-landing parameter rays of the multicorns
Abstract:

It is well known that every rational parameter ray of the Mandelbrot set lands at a single parameter. We study the rational parameter rays of the multicorn ∗d, the connectedness locus of unicritical antiholomorphic polynomials of degree d, and give a complete description of their accumulation properties. One of the principal results is that the parameter rays accumulating on the boundaries of odd period (except period 1) hyperbolic components of the multicorns do not land, but accumulate on arcs of positive length consisting of parabolic parameters.
We also show the existence of undecorated real-analytic arcs on the boundaries of the multicorns, which implies that the centers of hyperbolic components do not accumulate on the entire boundary of ∗d, and the Misiurewicz parameters are not dense on the boundary of ∗d.

arXiv:1406.3428v3

ims15-07
Sabyasachi Mukherjee, Shizuo Nakane, Dierk Schleicher
On Multicorns and Unicorns II: Bifurcations in Spaces of Antiholomorphic Polynomials
Abstract:

The multicorns are the connectedness loci of unicritical antiholomorphic polynomials z¯d+c. We investigate the structure of boundaries of hyperbolic components: we prove that the structure of bifurcations from hyperbolic components of even period is as one would expect for maps that depend holomorphically on a complex parameter (for instance, as for the Mandelbrot set; in this setting, this is a non-obvious fact), while the bifurcation structure at hyperbolic components of odd period is very different. In particular, the boundaries of odd period hyperbolic components consist only of parabolic parameters, and there are bifurcations between hyperbolic components along entire arcs, but only of bifurcation ratio 2. We also count the number of hyperbolic components of any period of the multicorns. Since antiholomorphic polynomials depend only real-analytically on the parameters, most of the techniques used in this paper are quite different from the ones used to prove the corresponding results in a holomorphic setting.

  arXiv:1404.5031
ims15-08
Artur Avila, Mikhail Lyubich
Lebesgue measure of Feigenbaum Julia sets
Abstract:

We construct Feigenbaum quadratic polynomials whose Julia sets have positive Lebesgue measure. They provide first examples of rational maps for which the hyperbolic dimension is different from the Hausdorff dimension of the Julia set. The corresponding set of parameters has positive Hausdorff dimension.

arXiv:1504.02986v2

Pages