08-03-27.mw

> jack := VectorCalculus[Jacobian](
   [  (v^2 - cos(theta))/v, -sin(theta) - R*v^2 ],
 [theta, v]);
 

Matrix(%id = 135515180) (1)
 

> fix:=convert(
 solve( { -sin(theta) - R*v^2 = 0, (v^2 - cos(theta))/v =0 }, {theta,v}),
 radical);
 

{theta = arctan(`+`(`-`(`*`(R, `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2)))))), `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2)))), v = `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), ... (2)
 

> eval(jack, fix);
 

Matrix(%id = 139412632) (3)
 

> simplify(eval(jack, fix));
 

Matrix(%id = 139795908) (4)
 

> eval(%,R=0);
 

Matrix(%id = 136779292) (5)
 

> jill := unapply( simplify(eval(jack, fix)), R):
 

> jill(0);
jill(R);
jill(0.2);
 

 

 

Matrix(%id = 140426916)
Matrix(%id = 140427444)
Matrix(%id = 140382944) (6)
 

> with(LinearAlgebra):
 

> Eigenvalues(jill(0.2));
 

Vector[column](%id = 140768668) (7)
 

> [Trace(jill(0.2)), Determinant(jill(0.2)) ];
 

[-.5941456413, 2.039607805] (8)
 

for what R is tr^2 = 4*det? 

> discr := Trace(jill(R))^2 - 4*Determinant(jill(R));
 

`+`(`*`(`^`(R, 2), `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2)))), `-`(`*`(8, `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2)))))) (9)
 

> solve(discr=0, R);
 

`+`(`*`(2, `*`(`^`(2, `/`(1, 2))))), `+`(`-`(`*`(2, `*`(`^`(2, `/`(1, 2)))))) (10)
 

> evalf(eval(discr,R=2*sqrt(2)+.1));
 

.186037415 (11)
 

> evalf(eval(discr,R=2*sqrt(2)-.1));
 

-.191225941 (12)
 

> evalf(eval(discr,R=100));
 

99.91500440 (13)
 

> evalf(jill(100));
 

Matrix(%id = 140967076) (14)
 

> Determinant(jill(100));
 

`+`(`*`(2, `*`(`^`(10001, `/`(1, 2))))) (15)
 

> Determinant(jill(R));
 

`+`(`*`(2, `*`(`^`(R, 2), `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2))))), `*`(2, `*`(`^`(`/`(1, `*`(`+`(`*`(`^`(R, 2)), 1))), `/`(1, 2))))) (16)
 

> R:='R':
xphug:= [ diff(theta(t),t) = ( v(t)^2 - cos(theta(t))) / v(t),
        diff(v(t),t)     = -sin(theta(t)) - R*v(t)^2 ,
        diff(x(t),t)     = v(t)*cos(theta(t)),
        diff(y(t),t)     = v(t)*sin(theta(t))];
 

[diff(theta(t), t) = `/`(`*`(`+`(`*`(`^`(v(t), 2)), `-`(cos(theta(t))))), `*`(v(t))), diff(v(t), t) = `+`(`-`(sin(theta(t))), `-`(`*`(R, `*`(`^`(v(t), 2))))), diff(x(t), t) = `*`(v(t), `*`(cos(theta(t...
[diff(theta(t), t) = `/`(`*`(`+`(`*`(`^`(v(t), 2)), `-`(cos(theta(t))))), `*`(v(t))), diff(v(t), t) = `+`(`-`(sin(theta(t))), `-`(`*`(R, `*`(`^`(v(t), 2))))), diff(x(t), t) = `*`(v(t), `*`(cos(theta(t...
(17)
 

> with(DETools):with(plots):
 

> R:=1;
display( array([
     DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10,
 

>          [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
          [theta(0)=0, v(0)=.8,  x(0)=0, y(0)=1 ]],
 

>         theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
        scene=[theta,v],
 

>         linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
 

>       DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10,
 

>          [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
          [theta(0)=0, v(0)=.8,  x(0)=0, y(0)=1 ]],
 

>         theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
        scene=[x,y], title="path of glider",
 

>         linecolor=[blue,red], stepsize=0.1)
      ]));
 

>
 

 

1

Plot_2d Plot_2d

 

> eval(fix);
 

{theta = `+`(`-`(`*`(`/`(1, 4), `*`(Pi)))), v = `+`(`*`(`/`(1, 2), `*`(`^`(2, `/`(3, 4)))))} (18)
 

> R:=3;
display( array([
     DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10,
 

>          [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
          [theta(0)=0, v(0)=.8,  x(0)=0, y(0)=1 ]],
 

>         theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
        scene=[theta,v],
 

>         linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
 

>       DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10,
 

>          [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
          [theta(0)=0, v(0)=.8,  x(0)=0, y(0)=1 ]],
 

>         theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
        scene=[x,y], title="path of glider",
 

>         linecolor=[blue,red], stepsize=0.1)
      ]));
 

>
 

 

3

Plot_2d Plot_2d

 

> Eigenvectors(jill(3.0)); evalf(fix);
 

 

Vector[column](%id = 136305308), Matrix(%id = 140733024)
{theta = -1.249045772, v = .5623413252} (19)
 

>