> | jack := VectorCalculus[Jacobian](
[ (v^2 - cos(theta))/v, -sin(theta) - R*v^2 ], [theta, v]); |
(1) |
> | fix:=convert(
solve( { -sin(theta) - R*v^2 = 0, (v^2 - cos(theta))/v =0 }, {theta,v}), radical); |
(2) |
> | eval(jack, fix); |
(3) |
> | simplify(eval(jack, fix)); |
(4) |
> | eval(%,R=0); |
(5) |
> | jill := unapply( simplify(eval(jack, fix)), R): |
> | jill(0);
jill(R); jill(0.2); |
(6) |
> | with(LinearAlgebra): |
> | Eigenvalues(jill(0.2)); |
(7) |
> | [Trace(jill(0.2)), Determinant(jill(0.2)) ]; |
(8) |
for what R is tr^2 = 4*det?
> | discr := Trace(jill(R))^2 - 4*Determinant(jill(R)); |
(9) |
> | solve(discr=0, R); |
(10) |
> | evalf(eval(discr,R=2*sqrt(2)+.1)); |
(11) |
> | evalf(eval(discr,R=2*sqrt(2)-.1)); |
(12) |
> | evalf(eval(discr,R=100)); |
(13) |
> | evalf(jill(100)); |
(14) |
> | Determinant(jill(100)); |
(15) |
> | Determinant(jill(R)); |
(16) |
> | R:='R':
xphug:= [ diff(theta(t),t) = ( v(t)^2 - cos(theta(t))) / v(t), diff(v(t),t) = -sin(theta(t)) - R*v(t)^2 , diff(x(t),t) = v(t)*cos(theta(t)), diff(y(t),t) = v(t)*sin(theta(t))]; |
(17) |
> | with(DETools):with(plots): |
> | R:=1;
display( array([ DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
> | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
> | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[theta,v], |
> | linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
|
> | DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
> | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
> | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[x,y], title="path of glider", |
> | linecolor=[blue,red], stepsize=0.1)
])); |
> |
|
> | eval(fix); |
(18) |
> | R:=3;
display( array([ DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
> | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
> | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[theta,v], |
> | linecolor=[blue,red], stepsize=0.1, title="v,theta phase"),
|
> | DEplot(xphug, [ theta(t), v(t), x(t), y(t) ], t=0..10, |
> | [[theta(0)=0, v(0)=2.5, x(0)=0, y(0)=4 ],
[theta(0)=0, v(0)=.8, x(0)=0, y(0)=1 ]], |
> | theta=-Pi/2..3*Pi, v=0..3, x=-1..6, y=0..7,
scene=[x,y], title="path of glider", |
> | linecolor=[blue,red], stepsize=0.1)
])); |
> |
|
> | Eigenvectors(jill(3.0)); evalf(fix); |
(19) |
> |