SUNY at Stony Brook MAT 341: Applied Real Analysis
Fall 2024

Schedule

Legend: Red colored homework problems will not be graded, but make sure that you are able to do these problems, which give you an extra practice. The PDF version of the schedule is available for print here.

Dates

Sections covered - assigned reading before and after the class

Homework

Aug 26 & Aug 28

Orthogonal functions & Fourier series. Definitions & examples.
Ch.0, §§0.3.1-0.3.3 and Ch.1, §§1.1.1-1.1.4 and §1.1.6.

HW 1; due: Sep 4

p. 33: 1,3,7,8; pp. 44-46: 1,3,4,7,9,30; pp. 33-34: 2,6,11-14; pp. 45-46: 10,13-15,18,19,33,34.

Sep 2 & Sep 4

Pointwise and uniform convergence of Fourier series
Ch.1, §1.2.1 (proofs are optional) and §§1.3.3-1.3.4

HW 2; due: Sep 11

pp. 54-57: 1,2,3,15-17 and the following extra problems; p. 55: 4-7.

Sep 9 & Sep 11

Differentiation and integration of Fourier series. Parseval's Theorem. Complex form of Fourier series.
Ch.1, §§1.3.5-1.3.6, §§1.4.1-1.4.2 and §§1.5.1-1.5.3.

HW 3; due: Sep 18

p. 70: 9,11-13; p. 75: 4,5; pp.83: 1-3; p. 69: 4-6; p. 76: 9; p. 83: 4,5.

Sep 16 & Sep 18

Sturm-Liouville eigenvalue problems.
Ch.1, §1.6.1-1.6.6.

HW 4; due: Sep 25

pp. 96-97: 1-6,7,8,13; pp. 96-97: 10,11,14,15.

Sep 23 & Sep 25

The heat equation. Steady-state and time-periodic solutions. Homogeneous boundary conditions.
Ch.2, §§2.1.3-2.1.5 and §2.2.1.

HW 5; due: Oct 2

pp. 108-109: 1,3,4,10,11; pp. 120-121: 4,10,18.

Sep 30 & Oct 2

Solution of the initial value problem in a slab, relaxation time and uniqueness of solutions.
Ch.2, §§2.2.2-2.2.4.

HW 6; due: Oct 9

pp. 120-121: 2,3,5,7,8,11-14.

Oct 7 & Oct 9

Midterm 1, Oct 7, 2:00pm- 3:20pm, in class. Covers §§1.1.1-1.1.4, 1.1.6, 1,2.1, 1.3.3-1.3.6, 1.4.1-1.4.2, 1.5.1-1.5.3, 1.6.1-1.6.6, 2.1.3-2.1.5, 2.2.1-2.2.2.

No HW

Oct 14 & Oct 16

Basic properties of Fourier transform and solution of the heat equation on the real line.
Ch.5, §§5.1.1-5.1.3 and §§5.2.1-5.2.6.

HW 7; due: Oct 23

p. 292: 1,2,4,13; p.310: 15 and extra problems;
p. 292: 11,15,16; p.308: 6,7 No class Mon. Oct. 14 (Fall Break)

Oct 21 & Oct 23

One-dimensional wave equation. The vibrating string and d'Alembert solution.
Ch.2, § 2.4.3 and §§2.4.5-2.4.7.

HW 8; due: Oct 30

p. 150-151:2,11,13 and extra problems;
pp. 150-151: 4,5, 9-11,14-16.

Oct 28 & Oct 30

Applications of multiple Fourier series to Laplace's, heat and wave equations.
Ch.2, §§2.5.1-2.5.5.

HW 9; due: Nov 6

pp. 168-169: 1,2,4-6,10-13; pp. 168-169: 3,7,8,14.

Nov 4 & Nov 6

Laplace's equation in cylindrical coordinates.
Ch.3, §§3.1.1-3.1.3 and §§3.1.6-3.1.9.

HW 10; due: Nov 13

pp. 181-182: 8,9,13-16,18,19,23.

Nov 11 & Nov 13

Bessel functions.
Ch.3, §§3.2.1-3.2.3.
Midterm 2 , Nov 11, 2:00pm - 3:20pm, in class.

HW 11, due Nov 20

pp. 207-208: 1-5,14,16,18-20; p. 207: 6,7,10-13.

Nov18 &Nov 20

Bessel functions, continued.Notes
Ch.3, §§3.2.5-3.2.7.

HW 12; due: Nov 25

p. 208: 22-24,28-32; p. 208: 33,34.

Nov 25 & Nov 27

Wave equation in polar coordinates. Heat flow in the infinite cylinder
Ch.3, §§3.3.1-3.3.2 and §§3.4.1-3.4.2.

HW 13 due Dec 4

p. 216: 1,4-8 and p. 226: 1-3.

Wed, Nov 27 Thanksgiving break

Dec 2 & Dec 4

Legendre functions and spherical Bessel functions. Boundary-value problems in a sphere.
Ch. 4, § §4.1.1, 4.2.1-4.2.2 and §4.3.1.

Extra HW

p. 250: 8-10, p. 266: 3-7,11,12 and p. 275: 1-3.

Dec 9

Review

 

Dec 12

Final exam, Wed Dec 18, 2:15 pm- 5:00 pm