A mathematical family of mazes

Tony Phillips
Sigma Camp
August 17, 2023

It all starts with a game.
(near the top of the page)

Draw a large plus sign,

- four L-shapes in the corners, - four dots to make a square.

Number the free ends, including the dots.

Number the free ends, including the dots.

Number the free ends, including the dots.

Join end 1 to end 2 .

Join end 3 to end 4 .

Join end 5 to end 6 , always around the bottom of the design.

Continue:

join end 7 to end 8 ,
join end 9 to end 10 ,
join end 15 to end 16, always around the bottom.

At the end, you should have this design.

At the end, you should have this design.

This design is known as "The Cretan Maze."

It appears on Cretan coins of the $4^{\text {th }}$ century BC.

$\mathrm{K} N \Omega \Sigma \mathrm{I} \Omega \mathrm{N}=$ Knossos, a city in Crete.

It must be very old, because it appears on the back of a clay tablet from King Nestor's Palace in Pylos (western Greece).

The tablet was baked when the palace burned down in 1200 BC .
$7 \times 5.7 \mathrm{~cm}$. Text in Linear B lists
 people's names and numbers of goats.

It's a maze because a path runs from the outside to the center, traversing it completely.

For the Cretans, it was a symbol of the mythical labyrinth where the Minotaur was kept.

Try it!

Here it is scratched on a wall in Pompeii.

Here it is in a medieval manuscript from central Italy, written between 806 and 822 AD.

Text: "The City of Jericho."

Here's another example.

A page from a medieval Sefer Haftorot (a Hebrew Prayer-book).

The words of Psalm 104 run along the maze path.

The center reads: "The image of the wall of Jericho. The reader is as if walking."

Here's another example.

A page from a medieval Sefer Haftorot (a Hebrew Prayer-book).

The words of Psalm 104 run along the maze path.

The center reads: "The image of the wall of Jericho. The reader is as if walking."

Cretan maze and Haftorot maze.

Cretan maze and Haftorot maze. Redraw Cretan maze in circular form.

Cretan maze and Haftorot maze. Can there be others?

How are they similar?

1. Each has a single path leading from the outside to the center.
2. Each path traverses a number of concentric levels.
3. Each level is reached exactly once; level changes only occur at a central axis.
4. Path changes direction at each level change.

Number the levels. Then each maze has a level sequence: the list of level numbers you meet along the maze path.

Cretan maze level sequence is
Haftorot level sequence is

Number the levels. Then each maze has a level sequence: the list of level numbers you meet along the maze path.

Cretan maze level sequence is 032147658 , Haftorot level sequence is 03452167 .

What the Cretan maze and the Haftorot maze had in common:

1. Each has a single path leading from the outside to the center.
2. Each path traverses a number of concentric levels.
3. Each level is reached exactly once; level changes only occur at a central axis.
4. Path changes direction at each level change.

We will call a maze satisfying properties 1-4 a simple, alternating transit maze, or SAT maze. We can prove:

The topology of an SAT maze is entirely determined by its level sequence.
(If two SAT mazes have the same level sequence, there is a continuous. level-preserving deformation taking one to the other.)

An SAT maze can be put into rectangular form.

1. Split the central axis.

An SAT maze can be put into rectangular form.

1. Split the central axis.
2. Unroll the left side: 90°

An SAT maze can be put into rectangular form.

1. Split the central axis.
2. Unroll the left side: 90°
3. 180°

An SAT maze can be put into rectangular form.

1. Split the central axis.
2. Unroll the left side: 90°
3. 180°
4. 270°

An SAT maze can be put into rectangular form.

1. Split the central axis.
2. Unroll the left side: 90°
3. 180°

4. 270°
5. 360°

We can do the same for the Haftorot maze.

It will be convenient to draw all rectangular mazes with entrance on the right. Reflection does not change the topological nature of the maze.

Which permutations of $012 \ldots n$ can be the level sequence for an n-level SAT maze? Examples are 032147658 and 03452167 . What do they have in common?

Which permutations of $012 \ldots n$ can be the level sequence for an n-level SAT maze? Examples are 032147658 and 03452167 . What do they have in common?

1. Must start with 0 and end with n.
2. Odds and evens must alternate. Why?

Which permutations of $012 \ldots n$ can be the level sequence for an n-level SAT maze? Examples are 032147658 and 03452167 . What do they have in common?

1. Must start with 0 and end with n.
2. Odds and evens must alternate. Why?

Suppose a and b are consecutive levels in the sequence.
\leftarrow If the path enters between a and b it must also exit.
So there is an even number $0,2,4, \ldots$ of levels between a and b.

So a and b must have opposite parity: if a is odd b must be even, and vice-versa.

Since the path starts at level 0 (even) on the right side, the next level must be odd. That level is traversed from right to left.

Since the path starts at level 0 (even) on the right side, the next level must be odd. That level is traversed from right to left.

On the left side there will be a change to an even level, traversed from left to right.

Since the path starts at level 0 (even) on the right side, the next level must be odd. That level is traversed from right to left.

On the left side there will be a change to an even level, traversed from left to right.

Then on the right side, another change to an odd level.

Since the path starts at level 0 (even) on the right side, the next level must be odd. That level is traversed from right to left.

On the left side there will be a change to an even level, traversed from left to right.

Then on the right side, another change to an odd level.

All level changes on the right (entrance) side are even to odd.

Since the path starts at level 0 (even) on the right side, the next level must be odd. That level is traversed from right to left.

On the left side there will be a change to an even level, traversed from left to right.

Then on the right side, another change to an odd level.

All level changes on the right (entrance) side are even to odd.

All level changes on the left side are odd to even.

Notice: if two green intervals overlap, one must be nested inside the other. Same for red. (Otherwise the path would intersect itself).

What does this mean for the level sequence?

Notice: if two green intervals overlap, one must be nested inside the other. Same for red. (Otherwise the path would intersect itself).

What does this mean for the level sequence? With 032147658 as an example.
On the number line, plot all right-side (even \rightarrow odd) level changes.

If two of them overlap, one must be nested inside the other.

What does this mean for the level sequence? With 032147658 as an example.
On the number line, plot all right-side (even \rightarrow odd) level changes. Plot all left-side (odd \rightarrow even) level changes.

If two of them overlap, one must be nested inside the other.

Same procedure for the Jericho maze 03452167 .

On the number line, plot all right-side (even \rightarrow odd) level changes. Plot all left-side (odd \rightarrow even) level changes.

If two of them overlap, one must be nested inside the other.

Conditions for a permutation of $012 \ldots n$ to be the level sequence of an SAT maze.

1. Start with 0 , end with n.
2. Odds and evens alternate.
3. On the number line, plot all even \rightarrow odd level changes. If two of them overlap, one must be nested inside the other. Plot all odd \rightarrow even level changes. If two of them overlap, one must be nested inside the other.

Conditions for a permutation of $012 \ldots n$ to be the level sequence of an SAT maze.

1. Start with 0 , end with n.
2. Odds and evens alternate.
3. On the number line, plot all even \rightarrow odd level changes. If two of them overlap, one must be nested inside the other. Plot all odd \rightarrow even level changes. If two of them overlap, one must be nested inside the other.

Necessary and sufficient!

Some more examples.

Some more examples.

From a late $12^{\text {th }}$ century manuscript in Munich.

Should have been the SAT maze
0.3.2.1.4.7.6.5.8.11.10.9.12 but level 11 got eaten by the picture.

Text: "Theseus fights with the Minotaur in the Labyrinth."

Some more examples.
Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.
Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.
There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.
Rock mazes in Scandinavia.

There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Courtesy of Google Earth.

Some more examples.

Rock mazes in Scandinavia.
There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Some more examples.
Rock mazes in Scandinavia.
There are several hundred of them.

We will visit one on the island of Gotland in the Gulf of Finland.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Courtesy of Google Earth.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Courtesy of Google Earth.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Courtesy of Google Earth.

Solovetsky Соловецкий

© 2023 TerraMetrics

Image Landsat / Copernicus
Ostrov Bol'shoi Zhuzhfiripele Fars bon
$64^{\circ} 52^{\prime} 07.01^{\prime \prime}$ 36 $6^{\circ} 29^{\circ} 45.39^{\prime \prime}$ elev 73 ft

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Courtesy of Google Earth.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island

Courtesy of Google Earth.

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island

From
https://www.rbth.com/travel/334940-stone-labyrinths-russian-north

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island

From
https://www.rbth.com/travel/334940-stone-labyrinths-russian-north

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island

From
https://www.rbth.com/travel/334940-stone-labyrinths-russian-north

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island

Another 12-level maze on this island, from Jeff Saward's book Labyrinths \& Mazes (New York, 2003)

Some more examples.

Rock mazes in the Solovetsky Archipelago in the White Sea, Russia.

Bol'shoy Zayatskiy Island
Another 12-level maze on this island, from Jeff Saward's book Labyrinths \& Mazes (New York, 2003)

Level sequence:
0.7.10.9.8.11.6.1.4.3.2.5.12

Counting mazes.

Counting mazes.
We have seen three different 12-level SAT mazes:
$12^{\text {th }}$ Century manuscript.
0.3.2.1.4.7.6.5.8.11.10.9.12

Counting mazes.
We have seen three different 12-level SAT mazes:

$12^{\text {th }}$ Century manuscript.
0.3.2.1.4.7.6.5.8.11.10.9.12

Solovetsky Archipelago.
0.5.2.3.4.1.6.11.8.9.10.7.12

Counting mazes.
We have seen three different 12-level SAT mazes:

$12^{\text {th }}$ Century manuscript.
0.3.2.1.4.7.6.5.8.11.10.9.12

Solovetsky Archipelago.
0.5.2.3.4.1.6.11.8.9.10.7.12

Solovetsky Archipelago.
0.7.10.9.8.11.6.1.4.3.2.5.12

Counting mazes.
We have seen three different 12-level SAT mazes:

$12^{\text {th }}$ Century manuscript.
0.3.2.1.4.7.6.5.8.11.10.9.12

Solovetsky Archipelago.
0.5.2.3.4.1.6.11.8.9.10.7.12

Solovetsky Archipelago.
0.7.10.9.8.11.6.1.4.3.2.5.12

How many can there be?
Write $M(n)$ for the number of different n-level SAT mazes.

1. $M(n)$ increases exponentially with n.
2. There is no way to compute $M(n)$ directly from n.

You have to generate them all and count them.

n	$\mathrm{M}(\mathrm{n})$
1	1
2	1
3	1
4	2
5	3
6	8
7	14
8	42
9	81
10	262
11	538
12	1828
13	3926
14	13820
15	30694
16	110954
17	252939
18	933458
19	2172830
20	8152860
21	19304190
22	73424650

n	$\mathrm{M}(\mathrm{n})$
1	1
2	1
3	1
4	2
5	3
6	8
7	14
8	42
9	81
10	262
11	538
12	1828
13	3926
14	13820
15	30694
16	110954
17	252939
18	933458
19	2172830
20	8152860
21	19304190
22	73424650

Meanwhile ...

V. I. Arnol'd

Sibirskii Matematicheskii Zhurnal
29 36-67 (1988)
"meanders"

Meanwhile ...

V. I. Arnol'd
 Sibirskii Matematicheskii Zhurnal 29 36-67 (1988)

 "meanders"

Meanwhile ...

Meanwhile ...

0143256

0523416

0541236

Meanwhile ...

0523416

Meanwhile ...

V. I. Arnol'd

Sibirskii Matematicheskii Zhurnal 29 36-67 (1988)
"meanders"
Arnol'd's 8 meanders with 5 intersections $\leftarrow \rightarrow$ the 8 six-level SAT mazes.

0523416

0143256

0321456

05432160345216

n	$\mathrm{M}(\mathrm{n})$
1	1
2	1
3	1
4	2
5	3
6	8
7	14
8	42
9	81
10	262
11	538
12	1828
13	3926
14	13820
15	30694
16	110954
17	252939
18	933458
19	2172830
20	8152860
21	19304190
22	73424650

Arnol'd calculated up to
$M(17)=252939$.

Meanwhile ...

> S. K. Lando \& A. K. Zvonkin Theoretical Computer Science 117 227-241 (1993)
> Plane and projective meanders

Table of meandric numbers

n	0	1	2	3	4	5	6	7	8	9
m_{n}	1	1	1	2	3	8	14	42	81	262
n	11	12	13	538						
m_{n}	1828	3926	13820	14	15	16				
n	17	18	19	80694	110954	252939				
m_{n}	933458	2172830	8152860	19304190	73424650					
n	22	23	24	20	21					
m_{n}	$?$	678390116	$?$	6405031050	$?$	61606881612				

Meanwhile ...

> S. K. Lando \& A. K. Zvonkin Theoretical Computer Science 117 227-241 (1993)
> Plane and projective meanders

Table of meandric numbers

n	0	12	$3 \quad 4$	56	78	$9 \quad 10$
m_{n}	1	$1 \quad 1$	23	814	$42 \quad 81$	262538
n	11	12	13	14	15	16
m_{n}	1828	3926	13820	30694	110954	252939
n	17	18	19	20	21	
m_{*}	933458	2172830	8152860	19304190	73424650	
n	22	23	24	25	26	27
m_{n}	?	678390116	?	6405031050	?	61606881612

Meanwhile ...
S. K. Lando \& A. K. Zvonkin Theoretical Computer Science
117 227-241 (1993)
Plane and projective meanders

Thus, the problem of meanders seems to belong to the simply formulated but fairly difficult problems of combinatorial analysis related to different sections of mathematics and is a touchstone for various methods of enumerative combinatorics.

