MAT 336.01 Spring 2020 Homework April 9

1. Descartes states that the equation $y^{2}=c y-\frac{c x}{b} y+a y-a c(*)$ defines a hyperbola. Check this by hand, graphing ($*$) with $a=10, b=3, c=2$. [One way: divide by y and rearrange to get $x=\frac{b}{c}(c+a)-\frac{b}{c} y-\frac{b a}{y}$, plot the two curves $x_{1}=\frac{b}{c}(c+a)-\frac{b}{c} y$ (line) and $x_{2}=-\frac{b a}{y}$ (rectangular hyperbola passing through $y=a, x=-b, y=b, x=-a$ etc.) and add the two curves graphically: $x=x_{1}+x_{2}$.]
2. Later in that section, Descartes states that if you substitute for the triangle KLN a semi-circle with center L and diameter along the x-axis (as before; see figure) and let C be the intersection of the ruler and the semi-circle, the resulting curve will be "the first conchoid of the ancients." As before, the ruler pivots about the point G, and the ruler is "hinged" to the semicircle at L . Take b as the radius of the circle, and a as before.
i graphically sketch the conchoid when $b<a$ and when $b>a$. Say $a=10, b=5$ and $a=10, b=15$.
ii Imitate Descartes' calculation with KLN to find the equation of the conchoid.

3. Follow Galileo's algorithm to calculate by hand the square root of 1000. Use his approximation with (remainder $) /(2 \times$ integer root $)$ and compare your answer with that from a calculator.
