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Theorem 1. Let u ∈ L∞
t Cα

x be a weak solution of the Euler equations. For each a ∈ M , consider any solution of

d

dt
Xt(a) = u(Xt(a), t), X0(a) = a. (1)

Define v(t, a) := d
dtXt(a). Then v ∈ L∞

a C
α

1−α

t .

Remark 1. If α = 1
3 , then α

1−α = 1
2 , in agreement with the prediction of Landau and Lifshitz.

Remark 2. In fact, Phil Isett proved that if u ∈ L∞
t Cα

x be a weak solution of the Euler equations, then every

particle trajectory of u is of class C
1

1−α

t , see [1]. See also [2]. This is a stronger statement than what we prove here.

PROOF. Consider flow of a mollified field

d

dt
Xℓ

t (a) = uℓ(X
ℓ
t (a), t), Xℓ

0(a) = a. (2)

Let vℓ(t, a) := d
dtX

ℓ
t (a) and δτf(t, a) := f(τ + t, a)− f(t, a). The natural time-scale of the Lagrangian velocity

mollified at length-scale ℓ is the local eddy turnover time ℓ/δℓu, defined precisely by

τℓ :=
ℓ1−α

∥u∥L∞
t Cα

x

(3)

where δℓu := u(x+ ℓ, t)− u(x). Indeed, we have

Lemma 1. Let Xt be any solution of (1). Then

∥Xt(a)−Xℓ
t (a)∥ ≲ ℓ exp(t/τℓ). (4)

PROOF. Let us introduce δXℓ
t (a) := Xt(a)−Xℓ

t (a). Then δXℓ
0(a) = 0 while

d

dt
δXℓ

t (a) = u(Xt(a), t)− uℓ(X
ℓ
t (a), t)

= u(Xt(a), t)− uℓ(Xt(a), t) + uℓ(Xt(a), t)− uℓ(X
ℓ
t (a), t).

Whence, using that ∥∇uℓ(·, t)∥ ≲ supℓ′≤ℓ ∥δℓ′u∥L∞
t,x
/ℓ ≤ τℓ

−1 and |u− uℓ| ≤ supℓ′≤ℓ ∥δℓ′u∥L∞
t,x

, we have

d

dt
∥δXℓ

t (a)∥ ≤ sup
ℓ′≤ℓ

∥δℓ′u∥L∞
t,x

+ ∥∇uℓ(·, t)∥L∞∥δXℓ
t (a)∥ ≲

1

τℓ

(
ℓ+ ∥δXℓ

t (a)∥
)
.

The claimed result follows by Gronwall’s inequality. □

Lemma 2. Let Xt be any solution of (1) and v be the associated Lagrangian velocity. Then

∥vℓ(t, ·)− v(t, ·)∥L∞ ≲
ℓ

τℓ
for times 0 ≤ t ≤ τℓ. (5)

1



PROOF. Fix 0 ≤ t ≤ τℓ so that ∥δXℓ
t ∥L∞ ≤ ℓ. Thus, on these timescales, we have

∥vℓ(t, ·)− v(t, ·)∥L∞ = ∥uℓ(Xℓ
t (·), t)− u(Xt(·), t)∥L∞

= ∥uℓ(Xℓ
t (·), t)− u(Xℓ

t (·) + δXℓ
t (·), t)∥L∞

= ∥uℓ(·, t)− u(·+ δXℓ
t (A

ℓ
t(·)), t)∥L∞ ≲ sup

ℓ′≤ℓ
∥δℓ′u∥L∞

t,x
,

where Aℓ
t := (Xℓ

t )
−1. □

Lemma 3. Let Xt be any solution of (1) and v be the associated Lagrangian velocity. Then

∥vℓ(t+ τ, ·)− vℓ(t, ·)∥L∞ ≲
ℓ

τℓ
for times 0 ≤ τ ≤ τℓ. (6)

PROOF. From the Euler equation δτv
ℓ(t, a) := vℓ(t+ τ, a)− vℓ(t, a) satisfies

δτv
ℓ(t, a) =

ˆ τ

0
aℓ(s,Xs(a))ds, (7)

where aℓ = ∇pℓ +∇ · τℓ(u, u). It follows from standard commutator estimates that

∥aℓ(t, ·)∥L∞ ≲
1

ℓ
sup
ℓ′≤ℓ

∥δℓ′u∥2L∞
t,x

=
ℓ

τ2ℓ
. (8)

The conclusion follows using that τ ≤ τℓ. □

Combining the previous two lemmas, we have, we have

sup
0≤τ≤τℓ

∥v(t+ τ, ·)− v(t, ·)∥L∞
a

≲
ℓ

τℓ
. (9)

Now, note that since ℓ =
(
∥u∥L∞

t Cα
x
τℓ
) 1

1−α . Thus we finally obtain:

sup
0≤τ≤τℓ

∥v(t+ τ, ·)− v(t, ·)∥L∞
a

≲
(
∥u∥L∞

t Cα
x

) 1
1−α τ

α
1−α

ℓ . (10)

Since τℓ ∼ ℓ1−α → 0 as ℓ → 0, the statement holds. □

On the following page we include an excerpt from Landau and Lifshitz book on fluid dynamics, where this
improved regularity of the Lagrangian velocity is discussed.
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FIGURE 1. Pg 133 of Landau and Lifshitz
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