Holder regularity of the Lagrangian velocity in turbulence

Theodore D. Drivas

Theorem 1. Let u € L{°CY be a weak solution of the Euler equations. For each a € M, consider any solution of

d
%0 =u(Xi(a).1),  Xo(a) =a. S

Deﬁne 'U(t, a) = %Xt((l) Thel’l NS I/ZocftE

Remark 1. If o = 3, then ;% = 3, in agreement with the prediction of Landau and Lifshitz.
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Remark 2. In fact, Phil Isett proved that if v € L{°CY be a weak solution of the Euler equations, then every
1

particle trajectory of w is of class Ctm, see [1]. See also [2]. This is a stronger statement than what we prove here.

PrROOF. Consider flow of a mollified field

d

Xt =u(X[(a),t),  Xj(a) =a. @
Let v‘(t,a) := %Xf(a) and 0, f(t,a) := f(7 +t,a) — f(t,a). The natural time-scale of the Lagrangian velocity
mollified at length-scale ¢ is the local eddy turnover time ¢/d,u, defined precisely by
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where d¢u := u(x + ¢,t) — u(z). Indeed, we have
Lemma 1. Let X; be any solution of (1). Then
1Xe(a) = X{(a)|| S Lexp(t/me). )
PROOF. Let us introduce 6 X/ (a) := X;(a) — X/ (a). Then 6 X§(a) = 0 while
d l — ¢
70Xt (@) = u(Xe(a), 1) — we(Xi(a),t)
= u(Xy(a),t) = Up(Xe(a), t) + Ue(Xi(a), 1) — ue(X{ (a), 1)
Whence, using that || V(- ¢)[| S supp<y [0eullngs, /¢ < 7~ and [u — Ug| < supp<, 0wl Lgs,, we have
GIXE@ < sup ool s, + [Vaet D= 16X{ @ S = (¢ + 16X @)
The claimed result follows by Gronwall’s inequality. O

Lemma 2. Let X; be any solution of (1) and v be the associated Lagrangian velocity. Then

1
vf(t, ) —v(t, e < p for times 0<t<my. 5)



PROOF. Fix 0 <t < 74 so that |0 X/ ||z~ < ¢. Thus, on these timescales, we have
[0 (t,-) = o(t, )z = [T(XE (), ) = u(Xe(-), 1)l o
= [l (X5 (), 1) — w(XF () + 0X{ (), 1)l
:HWhﬂ—%%+ﬁXﬁAﬂﬁJWU»Sng%Mhﬁv

where Af := (X})~L. O
Lemma 3. Let X; be any solution of (1) and v be the associated Lagrangian velocity. Then

4
it +7,) = o(, )lze S

— for times 0< <7y (6)
Ty

PROOF. From the Euler equation 6,v¢(t,a) := v’(t + 7,a) — v'(t, a) satisfies

-
60t a) = / ag(s, Xs(a))ds, 7
0
where ay = Vpy + V - 74(u, u). It follows from standard commutator estimates that
1 L
lae(t, )|z < 5 sup |0pulZe = = ®)
o<t i’ T
The conclusion follows using that 7 < 7. U
Combining the previous two lemmas, we have, we have
l
sup [o(t +7,-) —v(t, )l S — ©)
<<y Ty
1
Now, note that since £ = (||ul|Leoca7y) . Thus we finally obtain:
1 e
sup [[v(t+7,-) —v(t, )L S (HU||Lt°°Cg) l-a Tglf(‘ ) (10)
0<7<7p
Since 7y ~ (1~ — (0 as £ — 0, the statement holds. ]

On the following page we include an excerpt from Landau and Lifshitz book on fluid dynamics, where this
improved regularity of the Lagrangian velocity is discussed.
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Let us determine the order of magnitude v, of the turbulent velocity variation over
distances of the order of 4. It must be determined only by ¢ and, of course, the distance A
itself. f From these two quantities we can form only one having the dimensions of velocity,
namely (eA)!. Hence we can say that the relation

v, oc (AR (33.6)

must hold. We thus find that the velocity variation over a small distance is proportional to
the cube root of the distance (Kolmogorov and Obukhov’s law). The quantity v, may also be
regarded as the velocity of turbulent eddies whose size is of the order of A: the variation of
the mean velocity over small distances is small compared with the variation of the
fluctuating velocity over those distances, and may be neglected.

The relation (33.6) may be obtained in another way by expressing a constant quantity,
the dissipation ¢, in terms of quantities characterizing the eddies of size A; ¢ must be

proportional to the squared gradient of the velocity v, and to the appropriate turbulent
viscosity coefficient vy, ; o v A

& OC Viyrb, 2 (V2/ Ay o ”.13/ A

whence we obtain (33.6).

Let us now put the problem somewhat differently, and determine the order of
magnitude v, of the velocity variation at a given point over a time interval T which is short
compared with the time 7 ~ l/u characterizing the flow as a whole. To do this, we notice
that, since there is a net mean flow, any given portion of the fluid is displaced, during the
interval 7, over a distance of the order of T, u being the mean velocity. Hence the portion of
fluid which is at a given point at time 7 will have been at a distance tu from that point at the
initial instant. We can therefore obtain the required quantity v, by direct substitution of tu
for A in (33.6):

v, oc (eTu). (33.7)

The quantity v, must be distinguished from v,/, the variation in velocity of a portion of
fluid as it moves about. This variation can evidently depend only on ¢, which determines
the local properties of the turbulence, and of course on 7 itself. Forming the only
combination of ¢ and 7 that has the dimensions of velocity, we obtain

v, « (e7)} (33.8)

Unlike the velocity variation at a given point, it is proportional to the square root of t, not
to the cube root. It is easy to see that, for T small compared with 7, v, is always less than v,.
Using the expression (33.1) for ¢, we can rewrite (33.6) and (33.7) as

v, oc Au(A/1pP,
v:oc Au(t/TH. } (339

This form shows clearly the similarity property of local turbulence: the small-scale
characteristics of different turbulent flows are the same apart from the scale of
measurement of lengths and velocities (or, equivalently, lengths and times). 1+

1 The dimensions of ¢ are erg/g sec = cm?/sec®, and do not include mass; the only quantity involving the mass
dimension is the density p. The latter is therefore not involved in quantities whose dimensions do not include
mass.

1 The inequality v, < v, has in essence been assumed in the derivation of (33.7).

11 1n this connection, the term self-similarity is often used in recent literature.

FIGURE 1. Pg 133 of Landau and Lifshitz
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