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⑪
Variational Principle for Euler/Burgers
&

LetM be a compact manifold without boundary (eg #TY)

Fix Xo and X
,
- SDiff(M) (Diff (M)

Xerozpis a path between Xo
,
X,

Yo

Let vix
,
t) be a rectorfield defined in a neighborhood

of EX13
,
such that

· v(x
,
d) = v(y ,

) = 0

· divv = 0
(in case of SDife)

Let X" be defined by

x = v(X

Y
Then
, Fax 16.0 = v(X

,
+) isavariation field.



D
We model our fluid as a continuum of particles
with unit density,

whose only saliant feature

is Kinetic energy. By Hamilton's principle ,
the

fluid equations arise as a description of
the path

that extremises the Kinetic energy among
all

admissible pathy in the configuration space
:

I

·
-

= -SY · V(X ,
tdVa

detDX]x) 1 is SDiff

=-
Since v is arbitrary and dir-face by Helmholtz-Hodge ·YI

=-gradp

If v is arbitrary ,
we get Burgers Y

+
= 0

.



Note
,
introducingw via Xu(t), Enter reads -

qu + n . Du = - 74
Du = 0

We now aim to give a similar variational picture
for viscose equations, such as Navier-Stokes

qu + n . Du = -Xp + VAU
Du = 0

The additional term model molecular
friction. As such

,

it

should have a probabilistic origin
.

Let's introduce Brownian Motion : (Wiener process
· Wo = 0 a . S.

e · W has independent increments ,

eig.

↑ Weth-We for anyaso
is

paths are continuous independent of past
values Ws

,

sit.

almost surely (just
· Increments are Gaussian

, eig
shy of C regular),

With - We - N(0 , u)
= muN(0,1)

Since

mean 0
,
variance U . ft

#[ (WA We)"] = It
,
"dWe=t

*



Stochastic integration (Ito integral (
⑪

-> ~
adapted to E , i .e. causal

,
cannot see into Future

(d =int. (Wi - Wein)
O ↑

converges in probability
(weakly)

im P((X-X) <2)
= 0

Note that if
↓conditionalexpectatoreage ofhistory [0,S]

h(t) :=JgdW ,

then EIhCtIE] is

EInlF] = EIhIA-n(F] + EInisIEs]
= 0 + h(s)

↑ since increments are iid
and mean zero

Thus
,
Its integrals are Martingales, eig . a fair game,

In particular, Ito integrals are mean zero :

E[d] = 0
,

since hos=



#gFormula. Fix fo CIC ⑮

Let dXy = u(X+, t)dt + EvdWt , Xo() = a

Consider F(X) , t) .
Let us keep terms up

to order dt :

df(Xy , +) = Gf)d+ + dX4f(xHessfI(dX,dXE

= (2+ f + n -Df + -Af((d+ + v-dW+Xf(x-

This is Ifors formula :

df (x+,+)
= (2+ 7 + n -Df + vDf((d+ + r-dW+Xf(x-

If we instead use time reversed Brownian motion

WT = 0

, Wit -
It X

+,+

df(x,y +) = (2+ 7 + n -Df = - Df((d+ + r- dw+Xf)y
Tit

Tit

LDEMARK : If IT
= VXT

,
then U=0 and X++ *X gives

dT (X
+,et)

= v dWDTTI
= EITX]

Feynman-Kas
Namely :

T(
,
+)=40 ; x,)d



⑳
Brownian motion induces a measure on the space
of continuous paths. One can approximate this by

4 (W ..., Wen) = cost) exp(- c+=
-We

,P)
= (const exp) - at t -We, ()

This is the joint density function for Brownian motion

at a discule set of times .

-i

4 (W
,

.
.

.,WinW
... dWen-> DWIN)

Wiener Measure

How does this measure transform under translation ?

+ = We + h +i,
DWt = Wti-Wit

exp(ct+DW) = exp(it/AW-Am() Gaussian

I

= xxp(-+ (Ah+, - 2Ah+ Awt)) exp(zi)
Thus t

exp(W)-
" = DW(w)

*



For these computations to make sense
,
we require thata

h + Hi If

di = u/e
,
Adt + dWE

Men WH
=Su ,

5)ds
,

so
WSH = n( ,

+)

and ne H' = n'th? This means we should have ne?

Thus we arrive formally at Girsanov Theorem.

If dXx = n(Xx
,

t)dt + FrdWe ,

then

We = in [x() - a - Stu(X,(), as]
so

t

DW(W) = exp(i(Su(X,s)dXs - =Sin(x,xids)DW(x)
jI

Wiener measure
under which

Wiener measure under
X is a Brownian motion

whichWe is Brownie
motion



D
A move standard way

to write is

measure under which We is Brownian motion

E t

dIPE
- (a) = exp(((u(X,s)dXs-u(x

,xids)
dQt
is measure under which Xe is Brownian motion.

We now introduce the concept of
Relative entropy.

Let p anda be two distributions functions on IR.

R(p(c)
:=Span log () dy

Measures how different p and g
are

.

A relative disorder.

Central to our study is

k(PQ) =En( =S
Note if f=& is thedensity, thisso

k( |P
+ 11Q) = - Sglogg DW(w)

the Shannon entropy Formula.



Note that
, using the Girsanov theorem

,
we have D

k(IP(Q) =En(To as mis is

=EsdX] inde
- F [Inex,ds]

Thus we find

- ark(P
+ 1Q1) = =Ea[u(x,m,

x]d

Averaging over all possible starting points,

- 2 Sk(PlQda= Insid,

Relative entropy andenergyareequivalentin
may entropy



#tionPrinciple for Navier Stoleis T

dX
+

= u(X+,+)d+ + 5vdWt

Xola) = a

then

u(Xt,t) = Tim EXtiuIE]- X+ as.

For a general family of paths
,
define

DX :=[X+u1E] - X=

Fix two random differmorphisms Xo and Xt

Let EXe3 be a stochastic process connecting them

Consider the action :

S[EX3] = :S-DXidVd



Variations are again made by
⑨

X = v (X]
,
t) V(X ,0) = v(x

,t) =c

D . v = 0

Now

0= S((x))= -SDXDdN
=

-/SDX-Dud↑ It's formula
=

-jSnoxe (* + vB)vdNd

=j9Au + uzu--Au)vdVt

For this to hold for all solenoidal v, we must have

8th + n
. Xu = - Xp + Bu

X - u =0

Navier-Stokes equations !


