Lecture 8: Inviscid Burgers equation
$$O$$

Equation arises as geodesic on Diff(M):
 $A(x) = \frac{1}{2} \int_{-\infty}^{+\infty} |\dot{x}_{t}|a_{1}|^{2} da dt$
 $t_{t}M$
 $SA(x) = 0 \implies \dot{x}_{t} = 0$
The equation for $M \leq IR^{n}$ (without boundary) is:
Initial value $\begin{cases} \dot{X}_{t}(a) = 0 \\ \dot{X}_{0}(a) = N_{0}(a) \\ \dot{X}_{0}(a) = R \in M \end{cases}$
is called the Burgers equation. If M is flif,
then trajectories X_{t} themselves super cut
geodesics on M. Provided X is a diffeormorphism;
Eulerian form:
 $\dot{X}_{t}(a) = 0$
 $\dot{Y}_{t}(a) = 0$
 $\dot{Y}_{t}(a) = 0$
 $\dot{Y}_{t}(a) = R \in M$
 $d = R \in M$
 $\dot{Y}_{t}(a) = 0$
 $\dot{Y}_{t}(a) = R = 0$
 $\dot{Y}_{t}(a) = 0$

Two paint problem for Burgers (remark)
Fix
$$Q \in PiH(M)$$
. Burgers geodore between Q and id :
Two-point $\begin{cases} X_{1}(M) = 0 \\ X_{0}(M) = 0 \\ Y_{0}(M) = 0 \end{cases}$
Problem $\begin{pmatrix} X_{1}(M) = 0 \\ X_{0}(M) = 0 \\ X_{1}(M) = 0 \end{cases}$
Suppose $J \in ZOO(SL)$. $X_{1}(M) = X_{1}(0)$ for $a \neq b$. This
happens iff $a - b = -\frac{1}{1 - t_{0}}$ ($\overline{Q}(M) - \overline{Q}(M)$).
Note $f(t) = -\frac{1}{1 - t} C (-\infty_{1} O)$
Remark; in $1d_{1}$ say $a7b_{1}$ then $Q(M) = Q(S)$
Thus $\frac{a - b}{Q(M)} = 70$ and so these cannot be
collisions.
In $1d_{1}$ the two pint problem is alway solvable
Remark in 2D: solid body has collisions once
Remark is half them is made. $R_{10}X$.
Thus $x = id$ ($x = 0$)

Singularity formation v.s. Global wellposedness

$$\begin{split} \ddot{X}_{t}(\alpha) &= 0 \implies X_{t}(\alpha) = \alpha + t u_{0}(\alpha) \\ Introducing \ddot{X}_{t}(\alpha) = u(X_{c}(\alpha), t), & ue see \\ d \\ d \\ u(X_{t}(\alpha), t) = 0 \implies u(X_{t}(\alpha), t) = u_{0}(\alpha) \\ (ombinding) & we have \\ u(\alpha + t u_{0}(\alpha), t) &= u_{0}(\alpha) \\ Differentiating in the label "a", \\ \nabla_{a} \left[u(\alpha + t u_{0}(\alpha), t) \right] &= \nabla_{a} u_{0}(\alpha) \\ Thus \end{split}$$

Z

 $\left(I + t \nabla_{a} u_{o}(a)\right) \cdot \left(\nabla_{x} u\right) \left(a + t u_{o}(a), t\right) = \nabla_{a} u_{o}(a)$

which implies

 $\nabla_{\mathbf{x}} \mathcal{U} \left(a + t \mathcal{U}_{0} (a), t \right) = \left(\mathbf{I} + t \nabla_{a} \mathcal{U}_{0} (a) \right) \nabla_{a} \mathcal{U}_{0} (a)$

Asymptotic geodesics ${\mathfrak S}$ Recall $X_t(a) = a + t u_0(a)$ $(A_o = \nabla_u U_o(c))$ $\nabla X_{t}(\alpha) = I + t A_{o}$ = 1 for all t fR If X, e D, (M), then det VX, (a) In this case, we must have for all tER $de+(I+tA_{o})=1$ Lemma: let NEM^{hin}(R). Then det (I+tN)=1 +teR => N Nilpotent Proof: Assuming det (I++N)=1 we have: $0 = \int_{I}^{d} det (I + IN) = tr((I + IN)^{'}N) \quad \forall t.$ Evaluating at +=0, we find trN=0. Differentiating again: $0 = \frac{d}{dt} + r \left(\left(t + t N \right)^{-1} N \right) \bigg| = t r \left(\left(I - t N \right)^{-1} N^{2} \right) \bigg| = t r \left(N^{2} \right)$ Continuing, $tr(N^{k})=0$ for any $k \in \mathbb{N}$. (we med only k=1,...,n)

New, suppose to contradiction, that N is not nitrokal. (1)
Then N has some non-zero eigenvalues
$$\lambda_{11} \cdots \lambda_{r} \wedge \cdots \wedge \cdots$$

Let m_{1} be the multiplicity of $\lambda i \in (1 \dots n_{r})$
 $M_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + m_{r} \wedge_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} + \dots + M_{r} \wedge_{r} \wedge \gamma = 0$
 $M_{1} \wedge_{1} \wedge_{1} + \dots + N_{r} \wedge_{r} \wedge_{r$

Ð For the other direction, suppose that N is Nilpotent. Then $N^{k}=0$ for some $k \in \mathbb{N}$. We claim det(I+N) = 1Suppose, for contradiction, that $dit (I+N) \neq 1$. Then ItN Must have a non-unity eigenvalue $\lambda u = (I+N)u = u+Nu \quad u\neq 0$ Thus $Nu = (\lambda - 1)u$ Note that $(\lambda - 1)u \neq 0$. Thus, by induction: $N^{k}u = (\lambda - i)^{k}u$ for all $k \in N$. This contradicts N boing nilpotent. Thus all $\lambda = T$. Notes since I+N has all eigenvalues one bigger than N, if follows that all eigenvalues of N one zero.

Recall $X_t(a) = a + f Y_0(a)$ $\nabla X_t(a) = I + f A_0$ $(A_0 = \nabla_a U_0(a))$ Ø

we must have

$$det(I+tA_{o})=1$$
 for all $t\in \mathbb{R}$

This holds iff
$$A_{\sigma}$$
 is Nilpotent. In
which case
 $(I + t A_{\sigma})^{'} = \sum_{m=0}^{K} (-A_{\sigma})^{m} \qquad (A_{\sigma}^{k} = \sigma)$
 $= I - A_{\sigma} t A_{\sigma}^{2} - A_{\sigma}^{3} + \dots + (-A_{\sigma})^{k}$

Using,

$$\nabla_{\mathbf{x}} \mathcal{U} \left(a + t \mathcal{U}_{0} (a), t \right) = \left(\mathbf{I} + t \nabla_{a} \mathcal{U}_{0} (a) \right) \nabla_{a} \mathcal{U}_{0} (a)$$

We see $(\nabla_{\chi} \psi) (\chi_{\xi}(\varphi_{1}, t)) = \int_{m_{1}=0}^{d-2} (-t)^{m} (\nabla_{\psi} \varphi_{1})^{m+2} \qquad \begin{array}{l} \text{In dim } d_{1} g_{m} \psi_{1} \psi$

$$d=2 \qquad u_{0}(a_{11}a_{2}) = \begin{pmatrix} v(a_{1}) \\ o \end{pmatrix}$$

$$d=2 \qquad u_{0}(a_{11}a_{2}) = \begin{pmatrix} v(a_{1}) \\ o \end{pmatrix}$$

$$\nabla_{a}(u_{0}(a)) = \begin{pmatrix} o & v'(a_{2}) \\ 0 & 0 \end{pmatrix}$$

$$d=3 \qquad u_{o}(a_{11}u_{21}a_{3}) = \begin{pmatrix} u_{1}(a_{21}a_{3}) \\ u_{2}(u_{3}) \\ 0 \end{pmatrix}$$

$$\nabla u_{o}(a) = \begin{pmatrix} D & g_{2}u_{0} & g_{3}u_{1} \\ 0 & 0 & g_{3}u_{2} \\ 0 & 0 & 0 \end{pmatrix}$$

F

9

In this case $\dot{\chi}_{1}^{(h)=} u_{1} \left(\chi_{2},\chi_{3}\right) \qquad \chi_{1}^{(h)=} a_{1} + u_{1} \left(a_{2} + t u_{3}(0_{3}), a_{3}\right)$ $\dot{\chi}_{2}^{(h)=} u_{2} \left(\chi_{3}\right) \qquad \Rightarrow \chi_{2}(c) = a_{2} + t u_{2}(a_{3})$ $\dot{\chi}_{3}^{(c)} = 0 \qquad \chi_{3}(c) = a_{3}$

 $\chi_{1}(\alpha) = \chi_{2} \partial_{1} u_{1} + \chi_{3} \partial_{3} u_{1} = u_{2}(\chi_{3}) \cdot \nabla_{2} u_{1}(\chi_{3},\chi_{3})$ $\partial_{2} u_{1}'(\chi_{2},\chi_{3})$ Quostions:

Singularity formation
Let's focus on
$$d=2$$
 and $M=IR$. We have
 $U_x(X_E(m,t)) = \frac{U_0'(\alpha)}{1+U_0'(\alpha)}$
Thus the first singularity emorges from the
label a_x at which $U_0'(a_x)$ is most negative.
The time of blowup is explicit
 $t_x = -\frac{U_0'(\alpha_x)}{U_0'(\alpha_x)}$

the location is also

$$(u_{*}) = u_{*} + t_{*}u_{0}(u_{*})$$

= $u_{*} - \frac{u_{0}(u_{*})}{u_{0}'(u_{*})}$

method

Remark: this formula looks like Newton's
tangent line: slope =
$$n_0'(\alpha_{00})$$

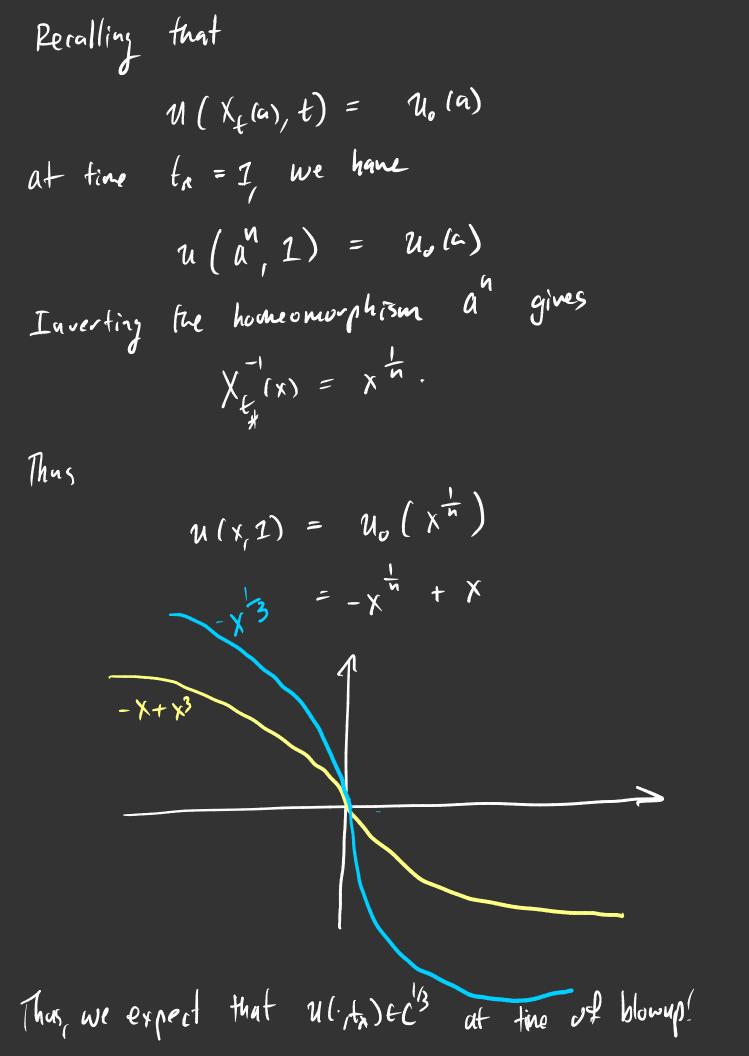
 $X_{1}(\alpha_{0})$
 $q_{1} - \frac{y_{0}(\alpha_{1})}{N_{0}'(\alpha_{1})}$

Note that for
$$|a - a_{\pm}| = 1$$
, we have
 $u_0'(a) = u_0'(a_{\pm})$ (<0 , by coscuption)
 $+ u_0''(a_{\pm})(a_{\pm})(a_{\pm})$ (<0 , by coscuption)
 $+ u_0''(a_{\pm})(a_{\pm})(a_{\pm})$ (<0 , by coscuption)
 $+ u_0''(a_{\pm})(a_{\pm})(a_{\pm})(a_{\pm})$ (<0 , by coscuption)
 $+ U_0''(a_{\pm})($

What regularity should we expect? Consider data N7,3, nodd $U_o(a) = -a + a'$ that $a_{*} = 0$ is global minimum Note $u_{v}(o) = -1 < 0$ $\mathcal{U}_{o}^{\prime\prime}(o) = O$ $v_{0}''(0) = n \cdot (n - 1) (n - 2) a$ generic = 56 if n=3 (0 if n=3 non-generic Time of blowup is $f_{\mu} = -\frac{1}{u_{\nu}^{\prime}/u_{\mu}} = 1$ The flow map is then is

(13)

$$\chi_{+_{\ast}}(a) = a + u_{o}(a) = a^{\prime}$$



(14)

Self-similarity
Note that if

$$\chi_{t}(a) = a + t u_{0}(a)$$

Then $y = A_{t}(x)$, the inverse, solves
 $x = y + t u_{0}(y)$.
For the special data: $x = (1-t) + t + y^{3}$
Subsitute $2 = (\frac{t}{1-t})^{1/2} + y = 1$ then
 $t y^{3} = \frac{(1-t)^{3/2}}{1t} = (1-t)^{3/2} = \frac{(1-t)^{3/2}}{1t}$
 $z^{3} + z = \frac{1t}{(1-t)^{3/2}} \times z$
Thus
 $z = F(X)$, $F \exp[x_{0}t + y_{0}]$

In fact
$$Z^{3} + Z = X$$
 is solved by
 $Z = F(x) = \left[\frac{x}{2} + \left(\frac{1}{27} + \frac{x^{2}}{4}\right)^{1/2}\right]^{1/3} - \left[-\frac{x}{2} + \left(\frac{1}{27} + \frac{x^{2}}{4}\right)^{1/2}\right]^{1/3}$

16

$$\begin{split} \mathcal{U}(x_{l}t) &= \mathcal{U}_{0}\left(A_{t}(x)\right) \\ &= -A_{t}(x) + A_{t}(x) \\ &= -\frac{(l-t)^{1/2}}{\sqrt{t}} F\left(\frac{1t}{(l-t)^{3/2}}\right) + \frac{(l-t)^{3/2}}{t^{3/2}} F^{3}\left(\frac{1t}{(l-t)^{3/2}}\right) \end{split}$$

and $M_{k}(x_{t}) = \frac{1}{1-t} F'\left(\frac{\sqrt{t}}{(1-t)^{3/2}}\right) + 3(F'F)\left(\frac{\sqrt{t}}{(1-t)^{3/2}}\right)$ $M_{k}(x_{t}) = \frac{1}{1-t} F'\left(\frac{\sqrt{t}}{(1-t)^{3/2}}\right)$ $M_{k}(x_{t}) = \frac{1}{1-t} F'\left(\frac{\sqrt{t}}{(1-t)^{3/2}}\right) + 3(F'F)\left(\frac{\sqrt{t}}{(1-t)^{3/2}}\right)$