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Pnamics of a two dimensional ideal fluid. O

Ideal fluid in ID ; U = E
,
42)

! qu + n. Xu
= - 74 is he

7 . u = 0 in X

u . n = 0 on
GM

Every solenoidal 2D velocity can be represented by

I

* X
n = n

+

4
,

xi = (4)1x -S- & Streamfunction

Thus
,
U is pointwise parallel to

isolines of It.

U . = 0 m Ge E
4 = cost on he

Vorticity has one component
t = WE - - th

- D 20 = x
+ x = 2

,
42- 24

D
& ⑪

interns of streamfunction w = D+

w( = w
. (X]")~=



Fiantsot Hemotor- 07 uses un to as

②

*n = 011X

↓

Casimirs: Jf(w)dx = 0 I continuous f :RAIR
-

in particular Ilwsp
= //Woll If pet , 07.

MomentumsJudy =0 on M= TD,

These facts allow one to define a dynamics

THEOREM : Let &R2 and No + ( (2) Then there

exists a unique solution we <" (10,%) +2) with

110H/l, E (wol Y
exp)coloi

Gunter
,

1926

Lichtenstein
,
1925

In fact (Yudovich
,
1963)

,

if woe (Per then the exists

a unique weak solution we (P(1-0 ;%) x 2) .

Moreover the solution depends continuously on the data; i

.

e
.

wo then col;w")
* Wit ; woh

Yndovish space is very important for longtime behavior!



⑬

Start with a random, smooth,

vorticity distribution onT?

Whathappens Next ?



Featuresof long time a

Aggregation of
like signed vortices
(inverse energy

cascade

Merger
I strongly monlinear

process(

Mixing of weak
vorticity

(invisia damping

Weak convergence to

some prefered state
-

- often looking
like a (locally steady state



~
Whyshould like signedvorticesaggregatea b

RiIR" -> IR

compact support -A = (%)
Scrirdr = P. deta=c
S

& Ft
w(x) =((x)) w(x) =c)(Ax))

4(x) = S (x-xwxd

E = -ES4 windy - renormalized energy,
since

well for capt supp vorticity
IR2

- i In x-xl wixw did a

AE = Eellipse-Edisk

=Six-x(((M -MIAMIA)
and

=
- i)) In (1)x) dx

IR"IR?

stretching makes energy
= -In(9) go down !



D

Now
, say you

have two radial vortices
,
far apart

circulation P, circulation 12
d

po- p

The velocity of each vortex looks

U : (x)
= P:it i = 1

,
2

This velocity, evaluated
at the other vortex,

is

4
, (P + Ex)

= 4,PE
= (P-p, (

+
+ 94

,
Ap,
X +
&(2)

↓

-2 X =5- )
= AX



d D

·-

·
d'
--

The distance a 'must
be smaller than

d,

since the individual energies of
each vortex

goes down . Thus ,
to keep not energy constant,

the two vortices must yet closer.

d'
· &

A axisymmetrize , via mixing

·

·
·



D
~-StationaryStates

,
Structure and (nistability

i.e. Tw and X4 aredefined by
U . DW =0

colinear
n=2

+4

Here are some special families

" u(x, y) = v(y) ex Shear flows

⑰
x(r, f) = v(r)2 Circular flows

Another large subclass of Statuary states
al

w = F(4) Fo Lip

Then
,

the streamfunction is determined by elliptic problem
#P = F(ct) in -

Brin 4 = 0 on 02

This equation can have
,
none
,
one or many solutions

depending on F
.
(consider, e.g, F(x = XX) ?

QUESTION : Which are stable
,
and what shape do they take?



&

Variationaldescription of steady states

V. I
.

Arnold gave
two variational characterizations

of steady states . They are critical points
of eather

co-adjoint orbit

a El[X] =0 XyWo is a steady statelicity
where

EiX] = [S /kIX*will dy
Wo

M

for X + Dp(m) . Here KTw] = -Fearle .

Note
,
from our previous computations, we expect

energy maximizers to have concentrated vorticity,

and minimizers to have dispersed.

adjoint orbit
Ib) Eix] = 0
# X* Yo is a steady state

Up velocity

En[x] = = )NXHoldy
M



D
Firstvariations : SENIX] = o

A I w = Xo
0 = EEX]E =E u= k[W]

= Su . k[5 ,w3]dxdX

= 42 ,w3dx
=n
+

z

=

-Ss4,windx=

Holds for all 54
,
23 =0 (steady state.

B I

EIx]E=Eax
= Ex,

= D4 . Day
,
43dx = /30 ,43.

M



Secondvariations D

"
Ex (5,2) =Su . In

,
33]

X
same as lessian
at a critical point

* (k[5,43]k[Sh ,23]dx
M

= Sti" Sy ,w3A
*
En
,
03 # 59

,
4354 ,w3]dx

M

If 4 = G(u)
,

then

EX]15 , 3) =ST sy,3 + cloR]

If G-E, = Fi) , then 6703
#0.

· If 6'30 then Eso , so energy minimizers

· It - 1 Ed o so energy
maximizers.

1 =X ,< FS)



ligidityandSymmetry ⑬

Arnold Stable Steady States

D4= Foltd F
where E satisfies

-x, F(()0o 0 = Em) +y
O

Then
,

Wo = A to is orbitally stable in
12 under the Euler dynamics .

such flows correspond to local maxima or minima

of Energy on isovortical sheets
,
i . e.

& = zw : - P-Diffple) S . t. W = Woods
Wo

THEOREM : Let (M
, g) be a compact two-dimensional

Riemannan manifold with smooth bary GM
.
Let 3

be a killing field for g tungent to the boundary
.

# n + 27/M) is Arnold stable
,
then Ign = 0 .

"If M is periodic channel, u is shear

⑰ · if M is disk cannulus
,
h is radial

= if M is spherical cap
,
a is zonal

· if M has no boundary , U
Th Other

Results : Hamel-Nadirasvili , Gomez-Jervace , Park ,Shi ,
You



⑬

=
Energetic assumptions imply symmetry.

First
,

lets understand how energy changes

under deformation of theelocity field.

Return to our example u=(,g)

Ya(x -> ↑ (1AxD) def A = 1

E(4x) = I SIPCIARd

=SAF() = S14'171)12lAFe
Th
-

=

-(e) in
Thus
,

under volume preserving
deformations of the velocity,

Minimal energy statesstretching increases energy.
should be concentrated,

In fact...



B

Theorem (Arnold) Let M = disk. Consider any-

Smooth velocity% with one non-degenerate zero#then 11 global minimizer us on Ono ; and
U
* is circular .

En[X] =SIDoxy

= [Sdc (1x(40x)) de
rang to 54c

isoperimetric
rang toinequality !

~
Fan ,

sart
of travel time

where we used ↳z

of

* [4
,

= 3)
eengm(St.=c)=dele an-



Non-stagnantsteady flows on channelare shea
t

2

(Nadirashvili -Hamel) . Assume

Fix VES' and let P(X) be the angle (Farina
,
2003)

O(X) = arcos (V) Syn (u(x). vt)
V

with convension arcos (1) =0 · Compute
=

arcos(z) = Fzz

76(x) = -X Syn (u - v+ squ'(z) = 28(z)

Fi (nor" : mir-curs

Th . 4

= [RV-n
Tul

=
=-t

Thus :

div (InRx6) = - dir (Mu
. ut) = - Alou

+

= $4
+4 . 44 = 50,43

Ef
,93=+f . Xg



Thus we arrive at the beautiful formula :
D

Asdim dw,
Se we find

dir (m) = o

Suppose our domain is the channel M = 50, 13 xI-

Let V = e,.
Then Ne = 1 at ye01 .

As such

Oly . o,
= 0 and we have

o
= Jediv (m) DO)dx

= - SiniDOld
M

M

=> NOR = 0 => alle,

Any non-stagnant velocity
is shear !

Generalization:

Laminar steady states are
shear (D --Nualart)

Requires only all streamlines be
non-contractible loops.



If one drops the conditions of laminar,
D

you can have many
non-shear steady& dynamical

states. See e .g. (D- Nualart) :

Also
,

on perturbed domains
,

iglands are

always present in a wide class of steady states :

(D-Ginsberg (



-leadystates come in infinite dimensional families ⑱

S

BTHEOREM : [hoftrat-Sweak , 10) Let to be an annular domain and

consider a non-degenerate Arnold Stable Steady state.=Then each vorticity distribution function in its neighborhood

corresponds to a unique stationary state
(

⑮ Pro= Ew : w = wok , 4- Dith(A)]-
THEOREM : (Constantin - D-Ginsberg , 10) Let MEMR be
a bounded domain with smooth boundary and let

No be an Arnold stable steady state on on with

· No has a single stagnation point ina

·

Mx=
Then
,
there exists =E(U,2) such that for all nearby

domains It'-212E and all functions 18-112E
there exists a differmorphism U: -> -d St . I

detxU= S -

B2
and 2 = 2008 t defines Enter on el Marby to

le

solution

.to Of = Et : 4 = 4,04 , 4t Diffus



someisovorticalleaveshavenotady set
a

420,
10

7 w
,
- Balwa such that

d = &w = w
= 2

,
0d@ +D43 .

w
,

contains no steady state

This follows from a very nice
work : Ginzburg- Khesin
.

vorticity vortey line Conditions
- & -

graph Y
= whas I may ,

Indicatw 1 min /

sch I suddle.
z &

= WTO.

I
⑮I

graph
w would have Hoo~to take same estreamfunca
which is multiply w = F(4)

ow = 04
connected

,
unless

the figue of is a
Zero

Set of 14 .
&



~Mandering and infinite time blowup ⑳

THEOREM (Nadirashvili 91)
.
Let At be

/
the periodic channel

.

There exists a

vorticity 310 and numbers 270
,
TTO

such that for any we
Y with tiT

Iw-31p = 3 While 11 Sw)-Ill < E

Y

Let v be an Arnold Stable steady state with the

property that v/tp#Vot· For simplicity take comette
w= (b)

Takeh sof . 2-CX
I

hi & I p= 1
-

Set 5 = -1 + Sh for Ex. Take Ex1 and

9 1 with 19131 and set wo : 3 + Eg

"
Thus length(((+] < #2 . Thus, lit)

1 supply= 0;+

similar construction shows that IU(H), ,25th
.

Infinite time blowup ! Kiseler-Surak
,
Denisov

, Clatos , Elgindi-Jerny.



⑪

Instabilityin strong norms

THEOREM : (Koch
,
02 ; Morgulis-Shnirelman-Yudovich , 08

-

Every stationary solution W
ec', of 2D Euler

whose Lagrangian flormap is not time-periodic
lisochronal

is nonlinearly unstable in C
. Specifically , HM , 270

there exists T= TCM ,Sh and a solution W(t) = Suo) S.t-L
114-wll
,
E while 11 W(T)-Ell

,
a >M .

To prove this result
,
one exploits shearing

.
Denote

M(t) = 11XXElo , Y
= x(Xe)

LEMMA1 : If PH*C for all +o
,
then V is isochronal.

-

↑
Example : (Elliptical vortex ( Remark :

x = x
+ 4
,

4 = (2) + 135 characterized in

neighborhooda
LEMMA 2 : There exist we (0 ,

5; 2
%

) such that
-

Inowll
,
&EE while IWC)-wolla Cu(t)<



Detouron Isochronal Flows w=F(4)

Conj : (Yudorich) : The only constant vorticity
isochronal flows are elliptical (F- > domain).

Coni : (D- Elgind:) : - simple connected domains,

=> a unique isochronal flow . (doman -> F)

Theorem (D .

- Elgindi) : For slight deformations D' of

a disk domain D
,
7 a unique isochronal floo.

Proof : CoArea formyla :

u()
= S = A(2 +=(3)
S4 =33

Let to be isochronal. (e.g . elliptical) . Then
all

4 O have equal enclosed area

* (St = (3) = A (843) = MoC

Since elliptical isochronal flow
is stable

,
B4 = coust,
I

D D

j
to getTo

Constantin - D. Glusbuy
D "

D4 = F(4)
Near ellipses , all steady states are nustable !



-

⑮



Stability of twisting.
A

CD-Elgindi -Techg)

Theorem: Let to be non-isochornal. There exists

E= ECOD 40 Sato for all U=4+ satisfying
T

#14-4 /< IS 114
+t ·D41lyds

the corresponding flowmap (Et)
satisfies

114Pell, It

Bark: = Bincy) , 3) defines a time periodic flow
I

Proof : Aim to show

F
where f , g satifyIf El ., F

.

&



-

⑮

non-jochromal·
TerA : Assure I/Ecit) V wit Balwa
+NE

Fix S( n .t . JH1 C
*
->X .

then 7 a dense set

of wo in By St . up = +0 . Let

S(t)CE

UN = ErrBa : <PW I

By Inwersemicontinuity of Sticke, Up is open
in
top

Koch: given wotBy
,
and my

T
,
40

,
73 set 131ack

and1S(Woth)) YEKS · Take K small and large

So tit * YEN · Thenwhy,LNE wot
Thus Up dence inc . Let B be any

ball withB&Bq
-

B is a completemetricspace,Hoaddea



- &

⑮

*elication : Aging of the Find

Let Dp(m) be group
of area preserving

differs.

If V: To,BHDp(a) , its length is

250] = Sillpde
Critical point are Euler" flows ! (Arnold) . Geodesic distance

inf
2[r]

distemy
lid
,
d) = v :Tappin

vid =
id

r( =4 infinite for

Eliashberg & Ratin : diam (Dp(M)) =0 E
taton

Given YeDpIM) and ETo,
define

tage (D;E)
= ind ST >0 : V.:Tai

+ Dp , Vid , U: 4,Sir

Note : tage (4 , E) =distbid)/

-

#Morem : Nearby stable stady states, tage(Ey

Some form of irreversibility in areversible system!



Thelimit of t -> X. ⑬

Gw + u. Tw
= c

Since InHil
= /Wolgo , the varticity weak -*

converges at long times : witil ->
w

.

&Wol = & weak-* closure of &S ,
i te

END STATES.

GOAL : Understand the structure of (Wol !

Lemma : The Kinetic energy is weak -- continuous
,

i. e.

-

wit => E(wil - Elrl

Thus
, energy is a robustinvariant

.
Eli = E(W)

&

On other hand
,
the casimirs

Ff(r = & f(w() dy
are not weak -* continuous unlessf affine.

In general we cannot expect

F(w) = EnI
=I

Iff convex
,
we have

#(iv) -> liment If (WH) = If(wol
+ -X

"Enstrophy" is lost due to fine scale mixing
.

CONTECTURE : (Sveraki 2013) : Generically , orhits EWare
not
precepto



s

#
-

FALSE : On It
,

we must takeSo
but Elu) = Eo 0 . Thus00.

NAVE CONJECTURE 2 : The end state minimizes
-

eastrophy subject to fixed energy.
-

I(w) = 2)widy #(w) = Eoin Elvi

Both I and E are quadratic in w
. Minimizing

I (v) - RECW) Yields
-

w = ** = -Apt large
Scale

where X
, is the first agenvale of D. "Vortex"

Mix /defined by reducing enstrophy) to may degree
consistent with fixed energy

Why choose minimum eustrophy? Theory of Selectivedecay
(Bretherton & Haidvogel, 1976)

Note : for decaying Navier-Stokes,
NC2 appears true.

-

(Foius - Sant , Schneider-targe
,
Matthaeus of al ...



·

InverseCascadeof Eyi
Elwo) = Eli)

, 1Wolgn T, 10 ·
Can the energy go to shall scales? (Ejprfoft , 1953)

Epl) :=ZiniPEYc11Wolp
nik

"Spectral blocking" : energy cannot pile up at small scales.

In fact
, energy iseserved to cascade to large seals

/ Maassen
,

Clercy
,

van Heijst,
1999 (



B
Saturn's Hexagon

Jupiter's Great Red Spot

observed first by Gallileo in 1665

texist >, 356 earth years !!!



⑬

StatisticalHydrodynamics

L. Onsager , Statistical Hydrodynamics , 1949

Joyce-Montgomery Considered point vordues

wil =H=

or i Ger 1in >

Under assumption of ergodicity of point vortet

dynamics on energy surface
it

and hypothesis that entropy ul L

S = - Celney-fe-in9- X X

1

be maximized (property of thermo . equilibrium) predicted

- w
=

- 8(4-M+)
- e

f(4 +4=)
-D4 = e

where O and My enforce energy
and net to circulation.

When 850
,
describes agrigation of

vortices

Negative temperature States



see Egink-Sneenivasan , 2006 &2

Note to 1 . Pauling (1945)

letter to C:2 . Lin (1945)



↳ wa + perkintrucaoa
⑬

Invariants : Evalua
,
en= llwall

Writing Con = [Miltifi(x), we have ODES

ai = v=(a) , Vilal
= BijkMk, Bijk (g ,f ,filz

a Vi is divergence free (Lionville therem)
· Vi is targett to energy ellipsoids &

enstraply spheres.
N -k

Moreover by carea formula
,
if fiRN-IR

are so that v . DF : = 0 Ac
,

then

= di(
when T = dev (***fT)

and Su : 3x : Six = 43

sapp !

(d- 2) -To
a

Invariant measure : # dH

dex , concentrates on D4 = -X+
*

Kraichan Merry
-



StatisticalHydrodynamics cont . sit
-

Miller
,
Weichman

,
Cross
,
Robert
, Commeria ,Turkington

STEP 1: <Approximation (
Infinite dim phase space finite dim phase space

It 17 HN
e .g. point vortices, Galerkin approx ,

discrete cells-

STEP 2 : (Dynamics(

dynamics are defined which preserve energy and

phase space volume (Lionville thn)

STEPS : (Entropy maximization)
let to be space of states with same energy as no
A microcanonical ensemble (Invanantmeasure on-o
is predicted as a stationary state U by demanding
available phasespace for given state be maximized.

Ergodic hypothesis says finite dim system spends most
~

of its time near u

&tisism's : Illegal transposition of limits To & N +X.
S

Works in systems mar-equilibrium , but tuid is fa.

- Lyapunov functional
(Shucrelman

,
1997)

- Wandering domans /Nadirushvili , 1991)

- integrable n-vortex motion (Khanin
,

1982)

infinite dimensional fluid is an "open system
- Mixing :Wit -O but not strongly . (Bedrissian

,
Musacudil

- configuration space is unbounded diam (Diffu (H?)=-



-Whnirelman'sMixing Theory ⑮

mixing operators
on [2(2)

kf(x)
=(k(x

,y) f(y)dy

where i) K(x
,y730

ii) (k(x,gi dy = 1 iii)/ kx, y)dy
: I

M

Example : @ K(X
,1) = S(y-4"(x) , 4 Diftple

Dk(x, y) = 1

Set of all mixing operators o LM) called K
is a convex

, weakly compact semigroup of contractions
In (1)

.
Thus it defines partial order :

fly if f = Ky

fug if feg and gef.

For rector fields
, say new ifinextr.

fro = Ex/UXUo3 & SE1) = Ecol.

Note that solutions of Euler UH - loo and

morrer any limit U ->- no

A minimal element ve Quo is such that for
-

all werns with wel
,
we have ver

Mixing is "reversible" on minimal elements !



Lemma : There exists a minimal element we no · ⑳
- Consequence of Zorn's Lemma

THEOREM : (Shnirelman
,
93)

(i) any Minimal element of too is a

stationary solution of Euler equations
(ii) the minimal elements have monotonic w= #(4)

Namely , all minimal elements satisfy
Dy = F(4)

for a univalent function F satisfying Arnold stability.

If Euler is "maximally mixing then long time limits are
steady stable states .

Three types :
thenp

Energy - excessive uiE

Fthen



VariationalApproach& consequences (with Michele Pokees

Let Goo = 20. 04
,

% = Dp(d)3

Gues = Gro 1 &E = Ech

clearly : [S1o Nwo ,
E

-*
-*

WOE
= On 1 E=Es

-(.)
- 0

-* &wo .

Remark : if wo is Arnold Stable then Jun o

Theorem: (Dole-D) Let f: -> IR be strictly connex.

-

For anyNot P
with to

,
there exists***

mindfuis contex

These are minimal flows Moreover
,
= s .t .Di(E) +ACE - l)

-

was = "gmin

No datum WotX is Isolated from equilibrium -

Theorem (Bonchett : extremizers correspond to Miller-Robertequibria .



Proof relies on the following characterization ⑮

if X = 3f : 1f(i)3
↓

Shnivelwan
,
Brycer-Gambo

Sverak

= E weX : n = k for k + (43 ↓

= [w + X : S = Swo ,S(v-cN
F-

= Ew + X :Su=Swo , Stir-Stivd
Firee

E .g : wo =M ,
then EweX :wow

Minimal elements exist by weake compactness. They
are stationary since for any permutation of

cubes Q, Q2 , the mixing
kno = 11-su + good

RE (k+ w
*) = J

*
( - w

= (d(x))(4x -+)
Q

No or 70 #permutana
=> (w*x - wiy) (4*(x - (1) 30 a

.e. x,I
Yo

Monotonic w = F(4) since

Lem ! Let veX
,
Ke

,
wikw. E +/ St . wEr,

-

if If (Wil = If (2)
for a strict . con. -.



⑬

ExcludingSymmetric equilibria

Theorem (Doke-D .) Let M be ToriXo, ].

For any
sheam from -righ and

any
270
,
800

E Gerrey - 2
X

73Co such that 13-711-s * E
- D

and g contains no shear flows,
5
, E ,Ms

where Eg & My are energy
and macestam of 3.

Remark : In particular
,
Euler cannot ,nviscid dang

for data of the form :

Idea
,

havee-approx point vortices, Energy ~log'
but any sheartlow

on its orbit has energy = OG)

since max value It distributed to a set at mostarea?



Instead
,
this is what happens:

Quasisteady , but may have undying
periodic or quasiperiodic structures.

Returning to the Mystery...



Formation of catsege vortices

("plasma echos" (

numerical simulation of A . Sunirelman



Quasiperiodical States of the fluid

numerical simulation of A . Sunirelman



⑬

①

t

V

*



⑮

①

t

V

*



⑬B

t -y

->

MYSTERY : How can one
understand

this apparent decrease of entropy
*

for the Euler equations at long times,

at least if one
looks at velocity fields.

* loosely interpreted,
some measure of the

diversity of a
set in the space

of

all possible velocities.

*While diversity in the space of velocities

appears to decrease
,

the entropy of
the

corresponding Lagrangian flows are likely

Increasing (Shrizelman
,

1997



⑰4

Snivelman'sConjecture

· Numerical simulations indicate

that the long time behavior

is not typically stationary,

but rather some
time dependent

Solution . - periodic , quasiperiodic
etc..

· This indicates that Euler is not a completely
-

effective mixer
, leaving solutions "trapped in

time dependent regimes .

CONTECTURE : (Shnirelman , 2013)
The space of

L- compact (Under Euler evolutial vorticity
orbits is

the weak-
attracter for the Euler dynamics

· Note ;
the space of compact orbits is at least

not the entire phase space
(Inviscia damping

(Bedrussian-Masmondi , Ionescn-Tial

· For anyNoth at least one long time limit

corresponds to a compact orbit
(sreak)



Decrease of "Entropy" for 2D Euler

t - y

->

S

*
2 .9

- Theorem : (Sverak) For any Noth
,
2
+
100) contulus

an 12-compact orbit.

-

BothInjecturesmeinaNeighborhooel
Ionesce & Jia



⑬
Non-zero net angular Momentum.

zero net angular momentum

Conjecture: (Modin ,Virani)
: Long time behaver

tracks integrable point vortex motions !



Thank-you !


