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⑪

Problem:find equations of motion of a bead on a wine

If
i= 14-- (f(x) = 03Y
·
mass M

bead

Kinetic energy
of bead : K =mi

T

Action : S(3x)+elil) =
It

Equations of motion : &S = 0
& variations along paths

on the wire

Hamilton's Principle 8 x (0) = SX(T)
= 0

T

T

0 = f) = m)Y() - jx()dt = - m(x(t) -Sx(t)dt
↑

O

must be tungent
-

Newton's equations : 1+)
= x (f(x+)F(x(H) = 0



②

#Membert'seyinc efor constrained motion

(Ts)t= normal space
H
,

C..4
inner product
-=targent space

Considersurfaces in someEideanspaceiaarticle

satisfies the
Newton equation

Y(+ ) = (T,S)
+

Geodesic
motion on

XH) ES Submanifold

X(0) = YES ,
X10 = VoETxS.

Example : suppose H
= R
,

C:) is Enclidean inner product,
and S = EF( = 03 for F : IR"-IRK . Then

(H)= i) Xf, (x(t)

fi(x(t)) = 0 i =, ..., k



How to find the "Lagrange multipliers" X ? ③

Cudimension1 : * IH = XIH) Xf(X (H)

f(X(t) = 0

Differentiating the constraint :

X(H · Tf(x(H) =0 = velocity is tangent

Y(H) · Df(x()
= - Hsfx,)

Interpretation of the force X1F :
must add tw

[S5 to suppress
the

deviation of free
I motion from S

- w+ (TxSi
*
is so

L X( - X +++
· is on S up to

O(+3) ·

tV TxS
The secondfundamental form #x of the embedded surface

is a quadratic map #x: EXTyS -> (T,st·
The

value #x(v,2) is the acceleration of a point moving
ohs .

f(x + +v + Ew) = f(x) + tv
.Tf(x)+ (tesfy,) + w.(f) + O(t)) .

X T
O ifxeS O if veTy T

O if w =-GiA



⑪
Codimension := :gradf: (x)
-

f. (x) = 0
S

Then X . gradf(x) = o

y gradf(x) =
- Hessf(x,x)

⑫Xi gradf; (x) - gradf(x)
= -Hesstxxy

Let (T= gradfi (x) · gradf, (x) .
Then

Jax = Hest(x , x)
=> X =-(T"Hest,

(x*)

of the submanifold

The second fundamental form
S = 5 f(x) = 03

S

1i
F : IR" -> IR

-

#=
- If less f,M,r) . 4f(x)

u
,
ve TXS



Example : motion of an ideal fluid T am

H = E (M ; IR") S
F

ur is rector field
on M

(4
,
2)
,H =urdy targest to &M, eigH

Since I is linear

S= 39eDiff (M)
: detDP( = 1 For all xem

(infinite dimension and codimension)
Volume preserving differs IH

↓

We require Jacobi's formula↳
Apply this for a deformation of X

,
X
,

which is

a rector field fax = u(X), XIs= X . Then

0= det 4X
*

/go = fr((X" X(0x))
= x . 4

% (x)

innEx: divi = 0 and until

By Hodge decomposition , the E orthogonal complement is
- ↓

a vector field 7 is expressed uniquely as

=+ gradd where diru=o
,
unt3 grad a



Now
,
what are the equations of motion ? ⑳

By D'Alembert's principle, they
will be

HE (Tyst
I

X(t) - S

Let us compute more directly by considering

as a "submanifold" of H .

Recall :

So= 3 XeDiff(M) : detaX(a) = 1 For all ae M3

= & S: [XDiff(M)
: defXY(a) =13

a . em
a (

Thus we
have f(x) = defIX(a) are the components

of the function f(x) whose level set
defines S.

By analogy with finite
dimensions,

we have

y = (x() gradfa(X) da
M

+ (a) = -(5)Hessf
(X,a

Who are gradfa() , (Jenas and Hessfal ?



Y

First
,
let's discussgradient" V is a functional ⑰

V : IH -> IR mapping
I to IR

We can introduce its derivative

V'(X) is again a
functional

, maybe depending
on X-

& Ex Fixed & Functional derivative

It is an abstract object. But recall
there is a scalar

so we can use Riest representation theorem

productinof a linear continuous functional on Hilbertsp)
linear,cont 1 : H+ IR ,

then AXEH ex = (X
,
h)

If a functional whereh= hetH

The definition of Vis

vixy= V(X +2)) "Gateau derivativeat

This is a linear functional , & cost . By Riest :

vi(x)y = (y , h)
= (y , gradv)y

A dif
action of linear functional on any point y

definition

where h = h(x := gradV(x)
= of gradient .

Distinguish betweed differential of functional and gradient:

Nation of gradient depends on choice of scalar product.

But we might like to use other scalder product.



⑳

Lemma : grad f(x) = - (DX)"XS

#of : FX) Z:& Fa(X
* (1
,0
wherexa

= tr (DXJimXEcal) Jacobi's Formula

= (div) (Xcal) where y= Gox

=S(divE)
(X(y)) Glyly

=/div(y)
G(Xyl e

=

-flyox(
(y)

· XX (y) : Xyly

=- (E, XoX
: XS)2

=
- (2 , (x)" 78a)

Note /gradfu
,
2) = div(box")ox(a)

Y = (xx) gradfa(X)da = )x()x) DS a
M M

=
- DX)" xx = ( XP)oX where a = poX ·

& Hodge! rectors orthogonal
to

are gradients ?



Recall the definition of the Hessian ⑨

Hessf(x) (3,2)
= (Degradfa , 2)n

Whemmn:HessfaIDDEN s
roof : By definition

,
we have with

2 grad (gradfax) =gradfa
> y

↑
(gradf(x) '2

=-dAXS
= (xx xz(Xx)"XSa

Then

Hessf(x) (3 ,2) = (DX"Dy@X)" Pla ,
3)
,

= (x) xy(4x)
+ * ]

Let y
= Yox and G : Box

= tr(y x5)oX



Now
, finally , the

Jacobian matrix ⑩

15f(x) = (gradf(x) , gradf(x)

Recalls (gradfa , 2)p= div
(30x")ox(a)·

Lemma :#ID
I s

a

Distributional representative of Laplacian

1rood : Letting =Gox , we
have (Tf(x)a

,
as
equals

(gradf(x) , gradfa (x)= 15 (3) · 45 , 12y
M

= (dirM) (X(9)
= (DJ
,
)(X(9)

Since

<D ,
3) = <(80x ding)

= divg(Xca).

&



D

-↓emai=DJ Nx
a

S(y) = S(y - a)
, J(y) = S(X

+

(y) -a)

We then have

S(Jf()aa Pa dale

=]D4(X"call

= /Scal Alox")
(a)a l

= Alkox") oX (a)

#S(Jf()a 4(a) da
= DCox") oxc



What about the inverse Jacobian Matrix ? Defined by⑰

(15f(x) ITxdal =l
i Kroneker delta in

Function Spaceafor
From before

,
we have

(15f(x), /JE(x), da)
= A(5E(x))oX()

X /1.7 , b

Let GrXX'), be the Green's function

for the Laplacian
: D
,
G(x,X)

= S. Now

A(5I(x)(0xx) = G
,
(a)

X /1.7 , b

X (JE(x)) = f(x(a) = S
X(a)

,
b

b

Thus we deduce that
JEx = G(a

,
X(3))

.

This

X(a)
,
b

#= GSX ,Xl



Finally , returning to 1
,
we have ⑬

+ (a) = - f(Jf)a ,a Hess f , (X, ])da

M

= -DJq7a . truPIX) dan
= xox

M

=-SGm(Xi ,Xa) trus
(Xcado

= (A"tr(Du)2)oX(a)

Thus Jox" =: p = D
-"fe(Dul?

This recovers
the pressure poisson equation !

We finally have
our geodesic equations, eliminating

the constraint:

X = (xa) gradt(xida
= XPo

M
= (x +r(Xu(2)oX

Il

(Gu+h -Du)oX
= (Xdir (n .Du)) ·X

Euler equations

IP(Gu + n .Du) = 0,P = I-DAdiv



⑭
-secondfundamental form of Spitz

Recall the second fundamental form of a submanifold

#In less M.I

Introducing Py ,
the arthogonal projection

onto Tx

and Ry ,
the projection outo (TxSt, we found

Q = (xDdirffox , 4 = idy- Qy

We have
,

by analogy

#(v) = Q(v) oX ,
ur dor-free

-F.

note that since XV-DU
= [n] is divergence

free provided nv are,
we have that I,, is

symmetric and 10 . ↑ general geometric fact
:

if two rector fields
are tangent

to a submanifold ,
so is their

commutator .



⑮
Exersize : Show that Euler can be said as

-

Motion which preserves
volume to second order.

Solution : Consider the linear flow

↑ (a) = a + +u() - E
-Y() = 1 + + Xu(a) - xW

det (D4
-
(s) = det (l + + xn - Ew)

- 1 +det(ID-EdtlIt-E
+ G(t3)

=

1 + + dirn -E (divw -(diru) + +r(u)) + O( +3)

If diva.o and w=Xp
Here
,
we used :

where-Ap = trAul ,
volume

order.

↑ A =- *AAT
is preserved to second

detA = tr(AA) de

detA = -tr(AAA) detA + /AA)d

+(tr(A*) detA



SectionalCurvatures for codimension one surfaces
Do

X = - X grad f Im implicit function

f(x) = 0 * theorem gives a surface

Df(x) O ExeS S : f(x) = o

X=x+5
,
x=x+M

i - Hessf . 3 - ↑gradf(x)
3 . grad f(x)

= 0

linearized

Now
,

we convert cure system into the invariant form.

It is sufficient to calculate the second covariant

derivative along our geodesic.

1 13 = 29.3
at d+ at

= P(3-
=P-p

since Px(anything Pf) =



⑰

* =) i =-He
↑ X-p gradf(x)

&

=P (Hes7(3;)+
D

=
-[Pest(,)-He

where
,
recall

↑ = He
This is it ! We found the curvature operator :

R(3
,
) :=-

Let us compute the
sectional curvatures

~
Since 3 tS
we canomit Px

c = (R(3
,%(4 ,

3)
3
,%

= T Hess1, 3) + Host
=
14 ,3)

2



⑱
What about 3 . 1f(x) ?

Recall that 3 .Pf(*) =
0. Differentiating, we

find

5 . Pf(x) = - Hessfy (*,3) .

Thus
, using

this and our 5 expression, we have

c = (R(3
,%(4 ,

3)
3
,%

= T HessE1, 3) +A less,

= Hess] (2,2) Hessty (,3) - /Hessfy (7 ,
3)12

T()12Gauss equation !
-
Hessf (4 ,2) Df(x)

We proved
# / ,v) = Tl

-Mini
&any 3

,% +TS provided 1131211+0



Codimension - 1 submanifold ⑭

-
scalar product in IR"

↓ ↓

· Gy
=,B ·XMY-X(3,

2)oX,

where A is connected to the reaction forces :

K

it is a rector-valued
bilinear form N : (3; 2)

He IR

↑(3 ,%) = J Hessfy13,7)

where (J); = Pf:
Df;: IR"-> RE

~
Volume preserving diffeomorphisms : By analogy,

the sectional curvatures of spiff are

↳SQ()Q(x3)-IQ(3Rd



Tacobi equation E + R ,
xX =

Oh

Currature determines (Lagrangian) stability !

Arnold considered shear flows
duct

(x) = (v(x)) , 0, 0)7

-↑ y(x)
= (v(42,+z) ,

0
,
%

Mis is an exact solution
of Euler with

pressure zero .
Indeed :

7 .xz = vixc (ix)= 0
Why ? The motion of all particles are geodesics in enveloping

Thus Q (M .Dq) = 0, Su
space. Such are totalsodesic

<,
= -SQdx

So
,
all curvatures non-positive (negative in most directions).

Lagrangian Unstable !
zero only if3

also parallel flow



Faceratingtion
⑪

↑

&
Mechanical friction : proportional to the normal

(constraining) Force,
directed opposite to motion :

Euler with
mechanical friction
: = -Xpox-1pllyFilly

Visions friction *
Navier-Stokesequation : Fix a number vso . Then

Y = -XpoX-vS (Jq(x)),
and a

M
where

S(Jq(x1) ,Xalda = DXoxi

Note : It is friction since
(X

,
D(xox")ox) = - 1x(x0x)4 :



-Conservationlaws : Noether's theorem. ⑫
T

Recall the action S(3X3tepi) =2)) IXHa)Pdad

&rinciple : symmetryofactioncospondstocorre
a

Energy (time
translation invariance) :

S([X3
+i) (X(-2,a) Idadt

=AsT
,ada-SoalThe

O
T

+jad
↑ ↑

- TyS
-(Tyst

Momentum (space translation invariance , provided
M-EV = M) :

S(Ex)ti)) = ↓JH,
actidad To

0 =Sl=S X(a)oXHd



Kelvin theorem (particle relabeling symmetry)
T

S(3x3tetop) =) SIXPindad
dirg =o

X
o=&sl=) Xa) · Yaad

= J·* da-(Xox*zda
M M

O

+jxXdadS
since*

m T is divergence-free
e(Tys)

+

provided G is

Thus
Suweda = Saiwe,da
M M

w solvingfor any W = X**, eig . any
one conservation law per

+ In ,w]
=0 = parameter. parameters are

up , differs,
in correspondence with

wher dir free rector fields. So

zu
you have as many cous,

as those.



Remark : (Pushforward of a divergence free rector is dix-free) :
h

-

One way
to see this is to note that the flow

of the pushforward v.f . is related by conjugation

= -Ego
Thus
,
if I is divergence-free, its

flow.Eg is

volume preserving so Logot is also . As such,

EE must be divergence-free by Lionville Theorem.

Another way
to see
,
by direct computation,

is :

div(43) = dir (304 .1404")

="
+ got X4"(2404

+

= (4+ + 304 . +(47)
-
as

= O

0 = - det 44 = tr ((Q) *"p)
def *4

as (D) - DOOP
=> tr(+"n20)

= 0

=>
tr (04 " +24 0 4

+ ) = 0



⑮

vintheonem
for o.

Suweda = Suiwda for any W = X*

M M

Taking G(a): = 08(a)del we
hava

4

(XI &)(a) = 0 619) · delast
Xyr)

indBut t Mode

Y() ↑
-

in



⑮

Horticity : Recall Kelvin's theorem : B

t
Onedexen = ⑳ Do dep M

Y() ↑

We find
,

by Stoke's theorem
,
the flux of vorticity

surface is preserved
.

through a comoving bounding

-

⑳= (windo,
XyIS)

S -

Taking an infinitesimal loop,
wearive at

the vorticity transport
law We = X Wo

Eig . G + U
. 100 in

2d with

G + [H
,
wa = 0 in 3d W = calc.

Gw + u .Dw
+ wDu + Dnw = 0 in God w=XDulT

2

Kelvin's theorem then shows helicity H
=Showed

is conserved for Euler.



⑫

~

Well-posedness

Consider the evolution of An

GDu + (h
- D) Du + (u) = - x2p

Ap = tr(Du)
?

Observe that In
should satisfy

Duly > c(xa) ,
when y encodes enough regularity. Namely

D Y is an algebra, eg
.

F
,gey => EgtY

Strae For Y =CK20 or Y = HS (d)

2) Y is compatible with the Neumann problem

I"ply
<Hul
,

This means avoid endpoint space
like WYP.

3) The solution to transport (8thP)
with Duty

is wellposed in Y .

Want u to be Lipshitz.

Generally not an issue at this regularity.



One can take Y = C d
,

de 10
,

1). Requires ⑳

Lemma : Let fe <" (i)
,
Stdx=o. The

-

the unique solution to

Ag =f inem#Eng = o
satisfies

181gh+2 ((d) 181

Proof : by potential theory estimates

Application :
- Ap = truch

=> IDP/
,
a CIDul/Dalga

by the algebra property
.

Then we can obtain
t

11D21H1)
,

-

> exp((( ,d) )/Dn((yds) 11Dholle
Let to To be the maximal existence time. Either

Construction by a fixed point
· Tx70

Gun + Un-14n
= XPr

· Shulpdt.= X. un = 0

Obtain DueCICY and also ne(l(mx [0,+3)



Uniqueness .

Let w = new. Then ⑲

81 + n . Dw + Xn . w = Xp-w
. Xw

This

wi = Swedi ,(xu

Thus
,
if u is Lthip y then w,0

=> W( =
0·

Thus U = Sud , Stic"SIM) - (19(M)

defines an infinite dimensional dynamical system.

Blowup : In 20
,
the equations are globally wellposed

in C'd spaces
(or sobolev

Elgindi (2019) showed thatsd

Euler blows up in
finite time with

Ch vorticity ,
a small.


