MAT513 Homework 7

Due Wednesday, March 30

Do any five of the problems below. If you also do a sixth problem, it will count as extra credit.

- 1. In class on 3/23 we showed that if $K \subseteq \mathbb{R}$ is compact, then it must be closed and bounded. Prove the converse: If $K \subseteq \mathbb{R}$ is is closed and bounded, then it is compact.
- **2.** We had the following theorem:

For any $A \subseteq \mathbb{R}$, the closure \overline{A} is a closed set, and is the smallest closed set which contains A. Provide a proof[†] of this theorem.

3. A notion dual to the closure of a set is the interior of a set. Specifically, given a set *E*, the **interior of** *E* is denoted by \mathring{E} and is defined as

 $\mathring{E} = \{ x \in E \mid \text{there exists a neighborhood } V_{\varepsilon}(x) \subseteq E \}.$

There is a symmetry between many properties regarding closure and the interior of sets.

- (a) We know that a set *E* is closed if and only if $E = \overline{E}$. Show that a set *U* is open if and only if $U = \mathring{U}$.
- (b) Recall that E^c denotes the complement of E, that is, $E^c = \mathbb{R} \setminus E$. Show that \overline{E}^c is the interior of E^c . Also show that $(\mathring{E})^c = \overline{E^c}$.
- **4.** Let *K* and *L* be compact subsets of \mathbb{R} . We can define a distance between the sets *K* and *L* as

$$d(K,L) = \inf_{x \in K, \ y \in L} \{ |x - y| \}.$$

- (a) Show that if K and L are disjoint compact sets, then d(K,L) > 0.
- (b) Give an example of disjoint closed sets A and B for which d(A,B) = 0.
- **5.** A set $P \subseteq \mathbb{R}$ is called **perfect** if it is closed and contains no isolated points (so every interval [a,b] is a perfect set). A set is $D \subseteq \mathbb{R}$ is **totally disconnected** if, for every *x* and *y* in the set *D* with x < y, there is a point $c \notin D$ so that x < c < y.

Show that the Cantor set is a perfect set which is totally disconnected.

- **6.** Below are several statements about compact sets; some are true and some are not. Prove the true ones, and give a counterexample for the false ones.
 - (a) Let K_n be a compact set for each $n \in \mathbb{N}$. Then $K = \bigcup_{n=0} K_n$ must be compact.
 - (**b**) Let F_{λ} be a compact set for each $\lambda \in \Lambda$. Then $F = \bigcap_{\lambda \in \Lambda} F_{\lambda}$ must be compact.
 - (c) Let A be an arbitrary subset of \mathbb{R} , and let K be compact. Then $A \cap K$ is compact.
 - (d) Let *K* be compact and *F* be closed. Then $K \setminus F = \{x \in K \mid x \notin F\}$ is open.

[†]Hint for problem 2: Let $L = \{x \mid x \text{ is a limit point of } A\}$. Recall that $\overline{A} = A \cup L$. It is immediate that \overline{A} contains all its limit points. To show that this is the *smallest* closed set containing A, you need to show that if $x \in \overline{A}, A \setminus \{x\}$ is not closed or it does not contain all of A. The crux of the proof is to show that L is closed, that is if x is a limit point of L, then $x \in L$.