MAT513 Homework 6

Due Wednesday, March 23

- **1.** Let $I = \{x \mid 0 < x < 1\}$ be the open unit interval (0,1), and let S be the open unit square, that is, $S = \{(x,y) \mid 0 < x < 1 \text{ and } 0 < y < 1\} = (0,1) \times (0,1)$.
 - (a) Find an injective function (that is, a one-to-one function) $f: I \to S$. This should be *very easy*: f does not need to be surjective (onto).
 - (b) Use the fact that every real number x has a decimal expansion to produce an injective function $g: S \to I$. Is your function g a surjection (onto)? It might be helpful to remember that every real number which has a "terminating" decimal expansion (such as 0.25) can also be written as an infinite decimal (e.g., $0.2499\overline{9}\cdots$ or $0.2500\overline{0}\cdots$).

As a consequence of the Schröder-Bernstein Theorem (which says that if there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijective function $h: A \to B$), this shows that the unit interval and the unit square have the same cardinality.

2. A real number $x \in \mathbb{R}$ is called **algebraic** if there are integers $a_0, a_1, a_2, \ldots, a_n$ so that

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

that is, $x \in \mathbb{R}$ is algebraic if it is a root of a polynomial with integer coefficients (note that rational numbers are algebraic, since each is the root of a degree 1 polynomial). Real numbers which are not algebraic are called **transcendental** numbers.

- (a) Show that $\sqrt{2}$ and $\sqrt{3} + \sqrt{2}$ are algebraic.
- (b) Fix $n \in \mathbb{N}$ and let A_n be set of algebraic numbers which are roots of polynomials of degree n. Show that each A_n is a countable set. (Hint: the Fundamental Theorem of Algebra is relevant here; you may assume it.)
- (c) Prove that the set of algebraic numbers is a countable set.
- (d) What is the cardinality of the set of transcendental numbers?
- **3.** In both parts below, justify your answer fully by establishing an bijection between the set in question and a set of known cardinality. (The goal is to establish cardinality, so a bijection is not strictly necessary if your argument is complete.)
 - (a) Let \mathcal{F} be the set consisting of all functions from $\{0,1\}$ to \mathbb{N} . What is the cardinality of \mathcal{F} ?
 - (b) Let $\mathcal G$ be the set consisting of all functions from $\mathbb N$ to $\{0,1\}$. What is the cardinality of $\mathcal G$?
- **4.** Let \mathcal{C} denote the middle-thirds Cantor set. Prove that

$$C + C = \{x + y \mid x, y \in C\} = [0, 2].$$

That is, any real number z with $0 \le z \le 2$ can be written as z = x + y, where x and y are in C. (The other direction is obvious: since $C \subset [0,1]$, certainly $0 \le x + y \le 2$.) This result is illustrated on this web page.

Below is a suggested outline of a proof (you still need to fill in the details).

• Let C_n be the "level-*n* Cantor set", that is

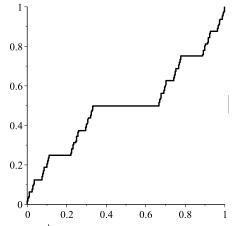
$$C_n = \bigcup_{i=0}^{2^n-1} \left[\frac{2i}{3^n}, \frac{2i+1}{3^n} \right] .$$

- Given any $z \in [0,2]$, observe that there are $x_1 \in C_1$ and $y_1 \in C_1$ with $x_1 + y_1 = z$. Show that for any $n \in \mathbb{N}$, there are numbers $x_n \in C_n$ and $y_n \in C_n$ with $x_n + y_n = z$.
- The sequences $\{x_n\}$ and $\{y_n\}$ may not converge, but they can be used to construct points $x \in \mathcal{C}$ and $y \in \mathcal{C}$ so that x + y = z. Specifically, the sequences $\{x_n\}$ and $\{y_n\}$ must have convergent subsequences (why is this?).

(You can assume that if a sequence of points $c_n \in \mathcal{C}$ converges, then the limit is also in \mathcal{C} ; this follows from the compactness of \mathcal{C} . We haven't yet covered compact sets, so just take it as true for now.)

- This gives the desired result.
- **5.** We discussed how the cardinality of the Cantor set \mathcal{C} can be shown to be the same as \mathbb{R} by constructing a surjective function $f:\mathcal{C}\to [0,1]$. This function f can be extended to a function $F:[0,1]\to [0,1]$ as follows:
 - Express *x* in base 3.
 - If the representation contains a 1, replace all digits after the first 1 by a 0.
 - Replace any remaining 2s with 1s.
 - Interpret the result in base 2. This is F(x).

The resulting function F is called the Cantor Function; an approximation of its graph is shown at right. The graph of the Cantor Function is also the best-known example of a "Devil's Staircase" (in fact, it is often called *the* Devil's Staircase).



In the late 1980s, the composer György Ligeti was was insprired[†] by the Cantor Function and wrote *L'escalier du diable (The Devil's Staircase)* as the 13th piece in his Études. This work incorporated self-similarity and rhythmic structure echoing the 2/3 patterns in the Cantor Set and the Devil's Staircase.

Listen to a performance of Ligeti's Étude No.13 on YouTube, Spotify, bandcamp, or elsewhere. Do you perceive any relations between the music and the Cantor Set? Does it help your appreciation/understanding of it in any way?

[†]See pp.51-59 of Lauren Halsey: "An Examination of Rhythmic Practices and Influences in Keyboard Works of György Ligeti". Masters thesis, University of North Carolina Greensboro (2012).