MAT513 Homework 4

Due Wednesday, February 23

1. (Cesàro Means) Given a sequence $\{x_n\}$, define a new sequence whose terms are the arithmetic mean of the first *n* terms. That is, let

$$y_n = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}$$

- (a) Show that if $\{x_n\}$ converges to a limit *L*, then the sequence of averages $\{y_n\}$ also converges to the same limit.
- (b) Give an example where the sequence of averages $\{y_n\}$ converges but the original sequence $\{x_n\}$ does not.

2. (Calculating square roots) Consider the sequence defined by $x_1 = 2$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$.

- (a) Show that x_n^2 is always greater than 2, and then use this to conclude that $\{x_n\}$ is a decreasing sequence. Then show that $\lim x_n = \sqrt{2}$.
- (b) Modify the sequence in part (a) to obtain a sequence that converges to \sqrt{c} .
- 3. An invented definition:

A sequence $\{a_n\}$ is **quasi-increasing** if for all $\varepsilon > 0$, there exists an $K \in \mathbb{N}$ so that whenever $n > m \ge K$ it follows that $a_n > a_m - \varepsilon$.

- (a) Give an example of a sequence which is quasi-increasing but is not monotone or eventually monotone.
- (b) Give an example of a quasi-increasing sequence that is divergent and not monotone.
- (c) Is there an analogue of the Monotone Convergence Theorem for quasi-increasing sequences? That is, suppose $\{a_n\}$ is bounded and quasi-increasing. Must it also converge? If so prove it; if not, give a counter-example.
- **4.** Prove the **Comparison Test for Series:** Let $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$.

Use the Monotone Convergence Theorem (a bounded monotone sequence has a limit).

5. Use the Cauchy Condensation Test[†] to show that the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for $p \le 1$. Hint: consider the cases $p \le 0$ and p > 0 separately.

[†]**Theorem:** Suppose $\{a_n\}$ satisfies $0 \le a_{n+1} \le a_n$ for all *n*. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

6. Read the excerpt consisting of pp. 239–249 from chapter 8 of Outliers by Malcom Gladwell at https://www.math.stonybrook.edu/~scott/mat513.spr22/HW/gladwell.pdf

Then write a paragraph or two in response. Is this relevant to teaching mathematics? How so (or why not)?