MAT513 Homework 3

Due Wednesday, February 16

- **1.** Are each of the following possible? If so, give an example. If not, give a proof showing why it is impossible.
 - (a) The sequence $\{a_n\}$ is divergent and $\{b_n\}$ is convergent, while $\{a_nb_n\}$ converges.
 - (b) The sequence $\{a_n\}$ is unbounded and $\{b_n\}$ is convergent, but $\{a_n b_n\}$ is bounded.
- **2.** What happens if we reverse the order of the quantifiers in the definition of convergence? That is, consider the following invented definition:

A sequence $\{x_n\}$ verconges to *L* if there exists $\varepsilon > 0$ such that for all $M \in \mathbb{N}$, we have $|x_n - L| < \varepsilon$ for all $n \in \mathbb{N}$ with $n \ge M$.

Give an example of a sequence which is vercongent. Is there an example of a vercongent sequence which diverges (in the ordinary sense)? Can a sequence verconge to L and also to K with $L \neq K$?

Explain in ordinary English what this definition is describing.

- **3.** Using the definition of convergence of a sequence, prove that each of the following sequences converges to the given limit.
 - (a) $\left\{\frac{2n+1}{5n+4}\right\}_{n=0}^{\infty} \longrightarrow \frac{2}{5}$. (b) $\left\{\frac{n^2}{2n^3-1}\right\}_{n=0}^{\infty} \longrightarrow 0$.
- 4. Prove or disprove (by giving a counterexample) each of the following:
 - (a) If $\{s_n\}$ converges to *S*, then $\{|s_n|\} \rightarrow |S|$.
 - (**b**) If $\{|s_n|\}$ converges, then $\{s_n\}$ is convergent.
 - (c) $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.
- **5.** Let P(x) be some property that *x* has.
 - A sequence $\{a_n\}$ is said to **eventually** have property *P* if there exists $M \in \mathbb{N}$ such that $P(a_n)$ holds for all $n \ge M$.
 - A sequence $\{a_n\}$ is said to **frequently** have property *P* if for every $M \in \mathbb{N}$, there exists $n \ge M$ for which $P(a_n)$ holds.
 - (a) Does the sequence $\{(-1)^n\}$ eventually take on the value 1? Does it frequently take on the value 1?
 - (b) Which is stronger? That is, does eventually always imply frequently? Does frequently always imply eventually? Give a proof or counterexample.
 - (c) Rephrase the usual definition of convergence of a sequence using either eventually or frequently (one works, the other doesn't. Which is it?)
- **6.** Write a paragraph or so explaining how the Nested Intervals Property tells us that every (possibly infinite) decimal determines a unique real number (although some real numbers have more than one decimal expansion).