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Introduction

ASteiner bundle is a vector bundle E on projective spacePr that sits in a short exact sequence

0 −→ U1 ⊗ OPr (−1)
φ−→ U0 ⊗ OPr −→ E −→ 0, (1)

where U1 and U0 are finite-dimensional vector spaces. These bundles arise in several geo-
metric settings, and by now they are the focus of a substantial literature (c.f.[1, 4, 5, 7, 8, 10,
12, 15, 18, 19]). When Pr = |V | is the projective space of one-dimensional subspaces of a
vector space V , φ is given by a linear map

μ : U1 ⊗ V −→ U0 (2)

having the property that μ(u1 ⊗ v) �= 0 for all non-zero u1 ∈ U1, v ∈ V . For example,
suppose that V ⊆ H0

(
X , A

)
is a very ample linear series on a smooth complex projective

variety X of dimension n. If B is a sufficiently positive line bundle on X , then the Steiner
bundle corresponding to multiplication

μ : H0(X , B ⊗ A∗) ⊗ V −→ H0(X , B
)

(3)

is the tautological vector bundle E|V |,B on |V | whose fibre at [s] ∈ |V | is the vector space
H0

(
X , B ⊗ ODiv(s)

)
. For X = P1 and V = H0

(
P1,OP1(r)

)
, these are known as Schwarzen-

berger bundles. The bundles E|V |,B were considered by Arrondo in [4] from a somewhat
different perspective.

In their influential paper [8], Dolgachev and Kapranov consider the bundle E =
�1

Pr (log�Hi ) of logarithmic forms with poles along a normal-crossing hyperplane arrange-
ment on Pr . They show that E is a Steiner bundle, and they establish moreover that one can
recover the arrangement from E provided that the planes do not osculate a rational normal
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curve. This is the prototype of a Torelli-type statement, asserting that a Steiner bundle deter-
mines the geometric data used to construct it. Other results along these lines appear in the
papers [2, 4, 6, 13, 17–19].

The purpose of this note is to point out that similar Torelli theoremshold for the tautological
bundles E|V |,B once B is positive enough. To begin with, we prove

Theorem A Let X be a smooth projective variety, and let V ⊆ H0
(
X , A

)
be a very ample

linear series. Fix a line bundle B on X that satisfies

Hi (X , B ⊗ A⊗−(i+1)) = 0 for i > 0.

Then one can recover the embedding X ⊆ P(V ), together with the line bundle B, from the
Steiner bundle associated to the multiplication mapping (3).

In the event that V is basepoint-free but possibly not very ample, one can recover from E the
image φ|V |(X) ⊆ P(V ). The Theorem gives a partial answer to Question 0.2 of Arrondo’s
paper [4].

Observe that if B = OX (KX + (n+ 2)A), then the hypothesis of the Theorem is satisfied
automatically thanks to Kodaira vanishing. It is natural to ask what happens for slightly less
positive B, for instance B = OX (KX + (n + 1)A). The example where X = Xd ⊆ Pn+1 is
a smooth hypersurface of degree d , A = OX (1) and V = H0

(
X , A

)
is instructive here. In

this case B = OX (d − 1), and therefore the map μ in (3) is identified with multiplication

H0(Pn+1,OPn+1(d − 2)
) ⊗ H0(Pn+1,OPn+1(1)

) −→ H0(Pn+1,OPn+1(d − 1)
)
.

of all homogeneous polynomials of the indicated degrees. In particular, μ—and hence also
E|V |,B—doesn’t see X . Amusingly, it turns out that this is the only situation in which Torelli
fails for the tautological bundles associated to OX (KX + (n + 1)A).

Specifically, we use considerations of Koszul cohomology and Green’s Kp,1 Theorem
from [14] to prove:

Theorem B Let V = H0
(
X , A

)
for a very ample divisor A on X, and assume that A does not

embed X as a hypersurface inPn+1. (In particular, we suppose that (X , A) �= (Pn,OPn (1)).)

(i). If B = OX (KX + (n + 1)A), then E|V |,B determines X.

(i i). Assume that degA(X) ≥ dim H0
(
X , A

)+ 2− n, and that H1
(
X ,OX

) = 0 when n ≥ 2.
Then the same conclusion holds for

B = OX (KX + nA)

except when φ|A|(X) ⊆ P(V ) lies on an (n + 1)-fold of minimal degree.

(In the exceptional case of (ii), the bundles E|V |,B only depend on the scroll containing X :
see Example 2.5.) Finally, we show that these ideas lead to a new proof of the theorem of
Dolgachev and Kapranov.

Our arguments revolve around a strategy pioneered by Vallès [18, 19]. His idea is to study
hyperplanes |W | ⊆ |V | for which the restriction E ||W | has a trivial quotient, with the aim
of recovering X ⊆ P(V ) as the locus of all such. In §1, we show that Theorem A follows
easily from considerations of Castelnuovo–Mumford regularity. For Theorem B, in §2, we
use duality to relate the existence of unstable hyperplanes to the non-vanishing of certain
Koszul cohomology groups, where Green’s results apply. In the Appendix, we indicate how
to recover the result of Dolgachev–Kapranov.
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Wework throughout over the complex numbers, although this hypothesis isn’t needed for
Theorem A. Given a vector space V , P(V ) denotes the projective space of one-dimensional
quotients of V , while |V | = P(V ∗) is used for the space of one-dimensional subspaces.
Somewhat sloppily, we take the liberty of freely confounding divisors and line bundles.

1 Proof of Theorem A

We start by fleshing out the construction of Steiner bundles indicated in the Introduction. Fix
a linear map

μ : U1 ⊗ V −→ U0, (1.1)

where U1,U0 and V are finite-dimensional complex vector spaces with dim V = r + 1.
Composing with the canonical inclusion O|V |(−1) ⊆ V ⊗C O|V | of vector bundles on the
projective space |V |, μ gives rise to a morphism

φ : U1 ⊗ O|V |(−1) −→ U0 ⊗ O|V |

of locally free sheaves. Assume now that μ(u1 ⊗ v) �= 0 for all non-zero vectors u1 ∈ U1

and v ∈ V . Then φ is injective of constant rank, and therefore E = cokerφ is a vector bundle
that sits in an exact sequence

0 −→ U1 ⊗ O|V |(−1)
φ−→ U0 ⊗ O|V | −→ E −→ 0. (1.2)

We will sometimes write E = Steiner(μ) when we wish to emphasize the role of μ. It is
elementary that conversely every Steiner bundle E arises in this fashion.

The main example for our purposes are tautological bundles associated to a linear system
of divisors. Let X be a smooth projective variety of dimension n, and let A be a very ample
(or at least ample and basepoint-free) line bundle on X . Fix a very ample (or basepoint-free)
subspace V ⊆ H0

(
X , A

)
of dimension r + 1, and denote by

D ⊆ X × |V |
the universal divisor, consisting of pairs (x, [s]) such that s(x) = 0. It is realized as the zero-
locus of a section of A � O|V |(1). Now consider a line bundle B on X which is sufficiently
positive so that H1

(
X , B ⊗ A∗) = 0, and set

E|V |,B = pr2,∗
(
pr∗1B ⊗ OD

)
.

This is a vector bundle on |V |whosefibre at [s] is identifiedwith the spaceH0
(
X , B ⊗ ODiv(s)

)

of sections of the restriction of B to the divisor {s = 0}. Starting with the exact sequence

0 −→ pr∗1(B ⊗ A∗) ⊗ pr∗2O|V |(−1)
·D−→ pr∗1B −→ pr∗1B ⊗ OD −→ 0

on X × |V | and pushing forward to |V |, one finds:

Lemma 1.1 Assuming always that H1
(
X , B ⊗ A∗) = 0, E|V |,B is the Steiner bundle on |V |

determined by the natural multiplication map

H0(X , B ⊗ A∗) ⊗ V −→ H0(X , B
)
.
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We remark that these statements remain true without change if B is a vector bundle of higher
rank on X .

Returning to the general setting of (1.1), fix a codimension one subspaceW ⊆ V defining
a hyperplane |W | ⊆ |V |. One says that |W | is an unstable plane for the Steiner bundle E if
the restriction of E to |W | has a trivial quotient, i.e. if

H0(|W |, E∗||W |
) �= 0.

Hyperplanes in |V | correspond to points in P(V ), and we define the Vallès locus of E to be
the algebraic subset Vallès(E) ⊆ P(V ) parameterizing all unstable planes.

The following remark is elementary but crucial:

Lemma 1.2 A hyperplane W ⊆ V corresponds to a point in the Vallès locus of a Steiner
bundle E = Steiner(μ) if and only if the restriction

μ|U1⊗W : U1 ⊗ W −→ U0

of μ to U1 ⊗ W ⊆ U1 ⊗ V fails to be surjective.

Proof In fact, one sees using the exact sequence

0 −→ U1 ⊗ O|W |(−1) −→ U0 ⊗ O|W | −→ E ||W | −→ 0

that Hom(E|W |,O|W |) ∼= coker(μ|U1⊗W )∗. 	

We now move towards the proof of Theorem A. Let X be a smooth projective variety of

dimension n, and A a very ample (or ample and globally generated) line bundle on X . Fix a
line bundle B on X that satisfies the vanishings

Hi (X , B ⊗ A⊗−(i+1)) = 0 for i > 0. (1.3)

This implies that B is very ample (e.g. by [16, Example 1.8.22] or via the arguments below).
The Theorem is essentially a consequence of the following

Proposition 1.3 Keeping the hypotheses just stated, let U ⊆ H0
(
X , A

)
be a subspace.

(i). If U is basepoint-free, then the multiplication mapping

μU : H0(X , B ⊗ A∗) ⊗U −→ H0(X , B
)

is surjective.
(ii). Suppose that U generates the sheaf A ⊗ mx of sections of A vanishing at some point

x ∈ X (so that in particular every section in U vanishes at x). Then

im(μU ) = H0(X , B ⊗ mx
)
.

Proof This follows from the theory of Castelnuovo–Mumford regularity (cf [16, Section
1.8]), but for the convenience of the reader we sketch briefly the argument. Assuming U is
basepoint-free, it determines a surjective mapping U ⊗ A∗ −→ OX of bundles on X . The
resulting Koszul complex yields a long exact sequence

. . . −→ �3U ⊗ A⊗−3 −→ �2U ⊗ A⊗−2 −→ U ⊗ A∗ −→ OX −→ 0

of vector bundles on X . Tensoring through by B and taking cohomology, the hypothesis (1.3)
implies with a diagram chase that the map

H0(X ,U ⊗ B ⊗ A∗) −→ H0(X , B
)
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is surjective. This proves (i). In the setting of (ii),U ⊗ A∗ maps ontomx , and now one arrives
at a complex having the shape:

. . . −→ �3U ⊗ A⊗−3 −→ �2U ⊗ A⊗−2 −→ U ⊗ A∗ ε−→ mx −→ 0,

with ε surjective. This complex is not exact, but its homology sheaves are supported at the
point x , and another diagram chase shows that this suffices to conclude the surjectivity of

H0(X ,U ⊗ B ⊗ A∗) −→ H0(X , B ⊗ mx
)
.

We refer to [16, Example B.1.3] for more details. 	

Proof of Theorem A Assume that V ⊆ H0

(
X , A

)
is very ample, and that (1.3) holds. We

assert to begin with that

Vallès(E|V |,B) = φ|V |(X) ⊆ P(V ). (*)

In fact, by definition points in the image of φ|V | correspond to hyperplanesW ⊂ V consisting
of sections that vanish at a fixed point x ∈ X . On the other hand, the preceeding Proposition
shows that these are precisely the hyperplanes W for which

H0(X , B ⊗ A∗) ⊗ W −→ H0(X , B
)

fails to be surjective. So (*) follows from Lemma 1.2. It remains to show that one can recover
the line bundle B from E|V |,B . Suppose then that W ⊆ V is a hyperplane corresponding to
a point φ|V |(x) ∈ P(V ). Proposition 1.3 (ii) and (the proof of) Lemma 1.2 imply that E ||W |
has a unique trivial quotient. Via the isomorphism

H0(X , B
) = H0(|W |, E ||W |

)

this determines a one-dimensional quotient of H0(B). One verifies that this is φ|B|(x) ∈
PH0(B), and therefore one can reconstruct from E the embedding defined by B, as claimed.

	

Remark 1.4 We leave it to the reader to check that the equality

Vallès(E|V |,B) = φ|V |(X) ⊆ P(V )

still holds assuming only that V ⊆ H0
(
X , A

)
is basepoint-free. We note also that everything

we have said goes through with only evident minor changes if B is a vector bundle of higher
rank, provided of course that (1.3) still holds. 	


2 Proof of Theorem B

Theorem B draws on some ideas and results concerning Koszul cohomology. We start by
recalling the requisite definitions and facts.

Let X be a smooth complex projective variety of dimension n, A a very ample line bundle
on X , and N an arbitrary line bundle. Fix a basepoint-free subspace U ⊆ H0

(
X , A

)
. For

every p, q ≥ 0 one can form the Koszul-type complex

. . . −→ �p+1U ⊗ H0(N ⊗ A⊗(q−1)) −→ �pU

⊗H0(N ⊗ A⊗q) −→ �p−1U ⊗ H0(N ⊗ A⊗(q+1)) −→ . . . .
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The cohomology of this complex is denoted by

Kp,q(X , N ;U ),

the line bundle A being understood; when N = OX we write simply Kp,q(X;U ). These
vector spaces control theminimal free resolution of⊕k H0

(
X , N ⊗ A⊗k

)
viewed as a graded

module over the symmetric algebra Sym(U ), but we do not draw on this interpretation.
However this is a very rich and well-developed story, and we refer for instance to [3, 11, 14]
for introductions.

TheoremB is a simple consequence of several observations and results about these groups.
The first follows immediately from the definitions:

Lemma 2.1 Keep notation as above.

(i). If p > 0, then K p,0(X;U ) = 0.
(i i). Suppose that W ⊆ U ⊆ H0

(
X , A

)
is a codimension one basepoint-free subspace of U.

Then there is a long exact sequence

. . . −→ Kp,q−1(X , N ;W ) −→ Kp,q(X , N ;W ) −→ Kp,q(X , N ;U )

−→ Kp−1,q(X , N ;W ) −→ . . .

Proof The map �pU −→ �p−1U ⊗ H0(A) is injective provided that p > 0, and by
definition Kp,0(X;U ) is its kernel. For (ii), the exact sequence of vector spaces

0 −→ �pW −→ �pU −→ �p−1W −→ 0

determines a short exact sequence of the complexes computing Koszul cohomology. This
gives rise to the stated long exact sequence of cohomology groups. 	


The next point is Serre–Grothendieck duality for Koszul groups:

Proposition 2.2 Set s = dim |U |, and assume that
Hi (X , N ⊗ A⊗(q−i)) = Hi (X , N ⊗ A⊗(q−i−1)) = 0 for 0 < i < n. (2.1)

Then there are isomorphisms

K p,q
(
X , N ;U) ∼= Ks−n−p,n+1−q

(
X , ωX ⊗ N∗;U)∗

,

where ωX = OX (KX ) is the canonical bundle of X.

This is established in [14, Theorem 2.c.6] or [3, Remark 2.26].
The most interesting input to Theorem B is:

Theorem 2.3 (Green’s Kp,1 Theorem) Set V = H0
(
X , A

)
, put r = dim |V |, and assume

that degA(X) ≥ r − n + 3. Then

Kr−n−1,1(X; V ) �= 0

if and only if φ|A|(X) ⊆ Pr lies on an (n + 1)-fold of minimal degree.

This is [14, Theorem 3.c.1]; see also [3, Chapter 3] for a somewhat different approach.
With these preliminaries out of the way we return to the setting of Theorem B. As before

X is a smooth complex projective variety of dimension n, and A is a very ample line bundle
on X . We will work with the full space of sections V = H0

(
X , A

)
, and following traditional
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notation we write |A| for the corresponding complete linear series, i.e. |A| = |H0
(
X , A

)|.
We put r = dim |A| = h0

(
X , A

) − 1.
Our goal is to study the Torelli problem for the tautological Steiner bundles E|A|,B when

B = KX + (n + 1)A or B = KX + nA. (2.2)

The first point to observe is that these divisors are sufficiently positive to guarantee that every
point of X ⊆ Pr gives rise to an unstable plane.

Lemma 2.4 Assume that (X , A) �= (
Pn,OPn (1)

)
. Then the divisor KX + (n + 1)A is very

ample and KX + nA is basepoint-free. Consequently, with B as in (2.2) one has

φ|A|(X) ⊆ Vallès(E|A|,B) ⊆ PH0(X , A
)
.

Proof The first assertion is established in [9, Lemma 2]. But when B is globally generated
and W ⊆ H0

(
X , A

)
consists of sections vanishing at some point x ∈ X , then

H0(X , B ⊗ A∗) ⊗ W −→ H0(X , B
)

cannot be surjective. 	

Proof of Theorem B With B as in (2.2), we want to check that in fact

φ|A|(X) = Vallès(E|A|,B).

LetW ⊆ H0
(
X , A

)
be a basepoint-free subspace of codimension one (hence dimC W = r ).

Thanks to Lemma 1.2, the issue is to show that multiplication

H0(X , B ⊗ A∗) ⊗ W −→ H0(X , B
)

(*)

is surjective except in the excluded cases.
Suppose first that B = OX (KX + (n + 1)A) and that (*) is not surjective. By definition,

this means that

K0,n+1(X , KX ;W ) �= 0.

We now apply Proposition 2.2 with N = KX and s = r − 1. The hypotheses (2.1) follow
from Kodaira vanishing, and we conclude that

Kr−n−1,0(X;W ) �= 0.

But r−n−1 > 0 sincewe assume that X isn’t a hypersurface, andwe arrive at a contradiction
to Lemma 2.1 (i).

The argumentwhen B = OX (KX+nA) proceeds along similar lines. Assume that (*) fails
to be surjective. Duality applies thanks to Kodaira and the assumption that H1

(
X ,OX

) = 0
when n ≥ 2, and therefore Kr−n−1,1(X;W ) �= 0. Using again that Kr−n−1,0(X;W ) = 0,
we conclude from the exact sequence in Lemma 2.1 that Kr−n−1,1(X; V ) �= 0. But then
Green’s Theorem 2.3 implies that X ⊆ Pr lies on an (n + 1)-fold of minimal degree. 	

Example 2.5 (Divisors in scrolls) To complete the picture we analyze the exceptional case
in (ii) when X ⊆ Pr sits as a divisor in an (n + 1)-fold of minimal degree Y ⊆ Pr . For
simplicity assume that Y is smooth, so that Y = P(Q) is the total space of an ample vector
bundle Q of rank (n + 1) on P1. Write q = deg Q, and denote by H and F respectively
the classes of OP(Q)(1) and a fibre, so that A = OX (H). Then X ≡lin dH + eF for some
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integers d ≥ 2 and e. Recalling that KY ≡lin −(n + 1)H + (q − 2)F , we see by adjunction
that

OX (KX + nA) = OX
(
(d − 1)H + (e + q − 2)F

)
.

The coefficient of H here being < d , this implies that

H0(X ,OX (KX + (n − 1)A)
) = H0(Y ,OY

(
(d − 2)H + (e + q − 2)F

))

H0(X ,OX (KX + nA)
) = H0(Y ,OY

(
(d − 1)H + (e + q − 2)F

))
.

Consequently the Steiner bundle E|A|,B doesn’t vary with X .

Appendix A: The theorem of Dolgachev–Kapranov

Let X ⊆ P(V ) = Pr be a finite set of d ≥ r + 1 points in linear general position, and
denote by I = IX ⊆ OP(V ) the ideal sheaf of X . Green shows in [14, Theorem (3.c.6)] that
Kr−2,2(Pr , I; V ) �= 0 if and only if X lies on a rational normal curve.1 Given the arguments
from the previous section, it is natural to expect that one can use this to get a new proof
of the Torelli-type theorem of Dolgachev and Kapranov from [8] (along with the numerical
improvements by Vallès [18]). Inspired by some of the techniques in [14], we indicate here
how this goes. For simplicity we assume that r ≥ 3.

Note to begin with that each Hi∗
(
P(V ), I) =def ⊕k Hi

(
P(V ), I(k)

)
is a graded module

over the symmetric algebra Sym(V ). In particular, there is a natural map

H1(P(V ), I) ⊗ V −→ H1(P(V ), I(1)
)

(A.1)

On the other hand, every point x ∈ X ⊆ P(V ) determines a dual hyperplane H ⊆ |V |,
and so X itself gives rise to a normal crossing hyperplane arrangement �Hi on |V |. One
checks that the Dolgachev–Kapranov bundle E = �1|V |(log�Hi ) is the Steiner bundle on
|V | determined by the multiplication map

H1(P(V ), I(1)
)∗ ⊗ V −→ H1(P(V ), I)∗

,

deduced from (A.1). It is elementary that X ⊆ Vallès(E), and we want to verify

Proposition A.1 If X � Vallès(E), then X lies on a rational normal curve in P(V ).

Equivalently, fix a subspace W ⊆ V of codimension one that generates OX . In view of
Lemma 1.2, we need to show that if the mapping

H1(P(V ), IX (1)
)∗ ⊗ W −→ H1(P(V ), IX

)∗ (A.2)

fails to be surjective, then X lies on a rational normal curve.
Since W ⊆ V , each Hi∗

(
P(V ), I)

has the structure of a Sym(W )-module. The first point
is that in bounded degrees, one can realize these as the cohomology modules of a sheaf J
on P(W ). Specifically:

Lemma A.2 For any suitably large integer k0 � 0 one can construct a coherent sheaf J on
P(W ) with the property that for i < r − 1 = dim P(W ) there are isomorphisms

Hi∗
(
P(V ), I)

≤k0
∼= Hi∗

(
P(W ),J )

≤k0

1 The statement in [14] actually involves Kr−1,1 of the homogeneous coordinate ring of X , but this is
isomorphic to the stated group. See also [3, Lemma 3.29] for another exposition.
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in degrees≤ k0, and these isomorphisms are compatible with the Sym(W )-module structures
on both sides.

Granting the Lemma for the time being, we give the

Proof of Proposition A.1 Tensoring the universal Koszul complex on P(W ) by J , one arrives
at a long exact sequence

0 −→ �rW ⊗ J −→ �r−1W ⊗ J (1) −→ �r−2W ⊗ J (2) −→ . . . −→ J (r) −→ 0

of sheaves on P(W ). This in turn gives rise to a hypercohomology spectral sequence abutting
to zero. The bottom two rows of its E1 page have the form

0 −→ �rW ⊗ H1(J ) −→ �r−1W ⊗ H1(J (1)) −→ �r−2W ⊗ H1(J (2)) −→ �r−3W ⊗ H1(J (3)) −→
0 −→ �rW ⊗ H0(J ) −→ �r−1W ⊗ H0(J (1)) −→ �r−2W ⊗ H0(J (2)) −→ �r−3W ⊗ H0(J (3)) −→

where the cohomology groups are taken on P(W ). The assumption (A.2) means (thanks to
the Lemma) that the map

H1(I) = �rW ⊗ H1(J ) −→ �r−1W ⊗ H1(J (1)) = W ∗ ⊗ H1(I(1))

has a non-trivial kernel. This must cancel against the E2 term coming from the bottom row
of the spectral sequence. In other words,

Kr−2,2(P(W ),J ) �= 0.

But Kr−2,1(P(W ),J ) = 0 since X does not lie on a hyperplane, so by (the analogue of)
Lemma 2.1 (ii), we conclude that Kr−2,2(P(V ), I) �= 0. Then Green’s theorem applies to
put X on a rational normal curve. 	

Proof of Lemma A.2 Letw ∈ P(V ) be the point corresponding toW ⊆ V , so that in particular
w /∈ X . Projection π : (

P(V ) − {w}) −→ P(W ) from w gives an identification

P(V ) − {w} ∼= SpecP(W )

(
Sym

(OP(W ) ⊕ OP(W )(−1)
))

.

Then for k0 � 0, one arrives at a surjective mapping

ε : Symk0
(OP(W ) ⊕ OP(W )(−1)

) −→ π∗OX

of sheaves on P(W ). It suffices to take J = ker(ε). 	
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