
Math 589 – Problem Set 1
Due Tuesday February 1

(1). Let k be an algebraically closed field, and let Mn×n = An2
(k) be the affine space of

all n × n matrices with entries in k. Determine which of the following subsets of Mn×n

are algebraic:

(a). SL(n) =def

{
A ∈Mn×n | detA = 1

}
.

(b). Diag(n) =def

{
A ∈Mn×n | A can be diagonalized

}
.

(c). Nilp(n) =def

{
A ∈Mn×n | A is nilpotent, i.e. AN = 0 for some N

}
.

(2). Let Pd be the set of monic polynomials in one variable T over C, which we identify
with Ad = Ad(C) in the evident way: the polynomial f = T d + c1T

d−1 + . . . + cd
corresponds to (c1, . . . , cd) ∈ Ad. Let

D = {f ∈ Pd | f has a repeated root }.
Show that D ⊆ Ad is a hypersurface, the so-called discriminant locus.

Hint: Write (formally) f = Πd
i=1(T − ρi), so that ci = ±ith elementary symmetric

polynomial in the ρi. Then use the fact that any symmetric polynomial in the ρi can be
expressed as a polynomial in the ci.

(3). Consider the subset X ⊆ C2 defined by

X =
{

(z, ez) | z ∈ C
}
.

Prove that X is not an algebraic subset of C2. (Your argument shouldn’t be more than
a paragraph or so!)

(4). Let n ≥ 2, and let f ∈ k[x1, . . . , xn] be a non-constant polynomial over an alge-
braically closed field k. Show that X = {f = 0} ⊆ An is infinite. When k = C, show
that X is non-compact in the classical topology. (Hint: View f as a polynomial in one
of the variables whose coefficients are polynomials in the remaining ones.)

(5). For which fields k is it true that any algebraic subset in X ⊆ An(k) (n ≥ 2) is
the zero-locus of a single polynomial f ∈ k[x]? (Hint: To get going, note that this is
happens when k = R, although there are other fields as well. Compare the previous
problem for some k that you have to rule out....)
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Math 589 – Problem Set 2
Due Tuesday February 8

Unless otherwise stated, we work as usual over an algebraically closed field k and if you
like you can assume that k has characteristic 0.

(1). Let A ⊆ k[t] be the set of polynomials whose linear term vanishes. Then A is
a finitely generated reduced k-algebra, and hence A = k[X] for some affine variety X.
Carry out this identification explicitly, ie find X.

(2). Let X ⊆ A2 be the curve xy = 1. Prove that X is not isomorphic to A1.

(3). As in class, let
M≤r

n×m ⊆ Anm

be the set of all n×m matrices of rank ≤ r. Prove that M≤r
n×m is irreducible.

Hint: GLn(k)×GLm(k) acts with dense orbit.

(4). Let X ⊆ An2
be the locus

X =
{
A ∈Mn×n | detA = 0

}
(so X = M≤n−1

n×n ). Prove that X is birationally isomorphic to An2−1.

Hint: Let V be an n-dimensional vector space over k. It may be helpful to note that
a linear transformation V −→ V of rank ≤ n − 1 is determined by specifying a one-
dimensional subspace K ⊂ V together with a linear transformation V/K −→ V .
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Math 589 – Problem Set 3
Due Thursday Feb. 17

Unless otherwise stated, we work as usual over an algebraically closed field k.

(1). Consider the quasi-projective variety

X = An − {0}.
Assuming that n ≥ 2 show that the ring of regular functions on X is k[x1, . . . , xn].
Deduce that X is not (isomorphic to) an affine algebraic set.

(2). Consider the curve {
Y 2Z −X3 −X2Z = 0

}
⊆ P2.

Draw the (restriction of) this curve in each of the affine planes UX = {X 6= 0}, UY =
{Y 6= 0} and UZ = {Z 6= 0}. Indicate how the pictures fit together, i.e. how asymptotes
in one view are reflected in another.

(3). Assume that char(k) 6= 2, and consider a quadric hypersurface Q ⊆ Pn.1 Prove that
after a linear change of coordinates Q is defined by the equation

X2
0 + . . . + X2

r = 0

for some integer 1 ≤ r ≤ n (called the rank of Q). How can one recognize the rank of
Q in terms of geometric data? (You are free – and encouraged – for this problem to use
facts from algebra about the classification of quadratic forms over k.)

(4). Given an algebraic set X ⊆ Pn, show that X can be cut out by homogeneous
polynomials all having the same degree, say d. (Note that we do not assert that these
polynomials actually generate the full homogeneous ideal of X.)

1In other words, Q is defined by an equation of degree 2.
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Math 589 – Problem Set 4
Due Thursday Feb 24

Throughout we work unless otherwise stated over an algebraically closed field k
(which when convenient you can assume does not have too small characteristic – but be
specific about this).

(1). Let X ⊆ Pn be a hypersurface of degree d (ie X = {Fd = 0} for some homogeneous
polynomial of degree d). Show that Pn −X is (isomorphic to) an affine variety.

(2). (a). Show that a subset X ⊆ Pn × Pm is Zariski closed if and only if it is defined
by a collection of bihomogeneous polynomials.

(b). Recall that via the Segre mapping one can identify P1×P1 with the quadric surface
XZ = YW in P3: so we will call this surface P1 × P1. Now fix d ≥ 2 and consider the
curve Cd ⊆ P3 arising as the image of the mapping:

P1 −→ P3 , [S, T ] 7→ [Sd, Sd−1T, ST d−1, T d].

Thus Cd ⊆ P1 × P1. Write down a single bihomogeneous polynomial (of suitable bi-
degrees) that defines Cd as a subset of P1 ×P1.

(3). Let
f(x) = a0x

d + . . .+ ad , g(x) = b0x
e + . . .+ be

be polynomials of degrees d and e over an algebraically closed field (with a0 6= 0, b0 6= 0).
Write Pi for the vector space of polynomials of degree ≤ i in x.

(a). Prove that f and g have a common root if and only if the mapping

µ : Pe−1 ⊕ Pd−1 −→ Pd+e−1

defined by
µ(p, q) = p(x)f(x) + q(x)g(x)

has a non-trivial kernel.

(b). The resultant Res(f, g) of f and g is defined to be the determinant:
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Prove that f and g have a common root if and only if Res(f, g) = 0.

(c). Consider the algebraic set
Z ⊆ A1 ×P1

defined by the two equations

a0(t)X
d + . . .+ ad(t)Y

d , b0(t)X
e + . . .+ be(t)Y

e.

Find an equation for pr2(Z) ⊆ A1,

(4 ). Let Sd denote the vector space of all homogeneous polynomials of degree d in (n+1)
variables, and consider as in class the mapping

µa,b : P(Sa)×P(Sb) −→ P(Sa+b) , (A,B) 7→ A ·B.
Prove that this is a morphism of varieties. Let Ra,b ⊆ P(Sa+b) denote the image. Prove
that if a 6= b, then there is a non-empty Zariski-open subset of Ra,b over which µa,b is
one-to-one. However show that µa,b is not globally one-to-one over Ra,b. What happens
if a = b?



Math 589 – Problem Set 5
Due Tuesday March 22

(1). (a). Let
φ : Pa ×Pb −→ Pn

be the morphism determined by n+ 1 bihomogeneous forms of type (1, 1) which do not
simultaneously vanish on Pa × Pb. Then φ is finite over its image. (Compare Theorem
8 on p. 65 of Shafarevich.) A similar statement holds for products of ≥ 3 projective
spaces.

(b). Let f : Ad −→ Ad be the morphism given by

t = (t1, . . . , td) 7→
(
σ1(t), . . . , σd(t)

)
,

where σ1, . . . , σd are the elementary symmetric functions in t1, . . . , td.
1 Prove that f is

finite.

(2). Let f : X −→ Y be a dominant morphism of irreducible (quasi-projective) varieties.
Prove that

dimY ≤ dimX.

(3). Given d ≥ 2, denote by PN(d) the projective space parametrizing all plane curves of
degree d. (So N(d) =

(
d+2
2

)
− 1.)

(a). Show that if d = 2, then there is a dense open subset U ⊂ P5 such that all conics
corresponding to points in U are projectively equivalent, i.e. differ by a linear change of
coordinates.

(b). On the other hand, prove that the analogous statement fails when d ≥ 3.

Note: You may grant that SL(n+ 1) is irreducible. You will want to observe that it has
dimension = (n+ 1)2 − 1.

(4). Find the dimension of the space M≤r
n×m of all n×m matrices of rank ≤ r.

1Equivalently, if you view the target Ad as parameterizing monic polynomials of degree d in one
variable X, then f is the map that takes a d-tuple (t1, . . . , td) to the polynomial (X + t1) · . . . · (X + td).
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Math 589 – Problem Set 6
Due Tuesday April 5

(1). (a). Let X ⊆ Pn+1 be a hypersurface, so dimX = n. Let V,W ⊆ X be closed
subvarieties. Show that if dimV + dimW ≥ n + 1, then V and W must meet. Prove
that in general the inequality cannot be improved.

(b). We saw in class that if C ⊆ P2 is a conic curve of maximal rank 3 (i.e. if C is
non-singular), then C ∼= P1, and similarly a quadric surface Q ⊆ P3 of maximal rank 4
is isomorphic to P1 × P1. This suggests the conjecture that if Q ⊆ Pn+1 is a quadric
hypersurface of maximal rank n+ 2, then

Q ∼= P1 × . . .×P1 (n times).

Settle this conjecture one way or the other, i.e. either prove it or give a counter-example.

(2). (a). Show that for every d ≥ 2 and n ≥ 2, there exist singular hypersurfaces of
degree d in Pn that have only finitely many singular points.

(b). Prove that if n ≥ 2, then a non-singular hypersurface in Pn is irreducible.

(c). Is the analogue of (b) true for codimension 1 subvarieties of Pn ×Pn?

(3). Let

∆ = M≤n−1
n×n ⊆ Mn×n = An2

denote the set of all singuler n × n matrices. (So ∆ is the hypersurface defined by the
vanishing of the determinant of an n× n matrix of variables.) Find the singular locus of
∆, and the multiplicity of ∆ at each of its singular points.

(4). Let G = G(1, 3) be the Grassmannian parameterizing lines in P3, and fix a line

`0 ⊆ P3.

Let Σ ⊂ G be the subset of G corresponding to all lines meeting `0, so that (as we’ve
seen before) Σ is a hyperplane section of G.

(a). Show that Σ has a unique singular point (at the point of G corresponding to `0). In
fact, Σ′ is a quadric Q of rank 4 in P4

(b). Let Q ⊂ P4 be a quadric of rank 4 in P4, with singular point o∈ Q. Let Q′ be the
proper transform of Q under the blowing up of o∈ P4. Show that Q′ is non-singular,
and that the fibre of

ν : Q′ −→ Q

over o is (isomorphic to) P1 ×P1.

(c). Returning to the realization Σ of Q in (a), define

Σ′ ⊆ G× `0
to be the incidence correspondence

Σ′ =
{

([`], x) | x ∈ ` ∩ `0
}
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Show that Σ′ is smooth, and that the projection

µ : Σ′ −→ Σ

is an isomorphism away from [`0], while µ−1[`0] is a copy of P1. This map is called the
“small resolution” of Q = Σ.



Math 589 – Problem Set 7
Due Thursday April 14

(1). Let X ⊆ C3 be the hypersurface x2 + y4 + z4 = 0, and denote by X ′ ⊆ Bl0(C
3) the

proper transform of X under the blowing up of the origin. Show that X has an isolated
singularity, but that X ′ is singular along a curve.

(2). Let X be a smooth real manifold, and let H1 denote the presheaf on X defined by

H1(U) = H1
(
U,R

)
(singular or de Rham cohomology, as you prefer), with the natural restriction maps. Is
H1 a sheaf?

(3). Let O ∈ Pn be a fixed point, let L = Pn − {O}, and let

p : L −→ Pn−1

be the morphism given by linear projection from O. Show that p realizes L as the total
space of a line bundle over Pn−1, and find its transition functions with respect to the
standard open covering of Pn−1 by copies of An−1.

(4). Denote by B the complement of the diagonal ∆ ⊆ P1 ×P1, and let

π : B −→ P1

be projection onto the first factor. Thus

π−1(p) = P1 − {p} ∼= A1.

Show that π is a Zariski-locally trivial A1 bundle, ie that for a suitable open covering
{Ui} of P1,

π−1(Ui) ∼= Ui ×A1

under an identification that realizes π as projection to the first factor. On the other
hand, prove that B is not the total space of a line bundle over P1. What is happening
here on the level of transition functions? Can you find an analogous construction of a
Zariski-locally trivial An bundle over Pn that is not the total space of a vector bundle?
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Math 589 – Problem Set 8
Due Tuesday April 24

(0). (Not to write up). Think through the connection between divisors and line bundles
stated in class.

(1). Let µ : X −→ P2 be the blowing up of a point P ∈ P2, let E ⊆ X be the exceptional
divisor, and let L = OX(E) be the line bundle corresponding to E.

(i). Write down transition functions for L with respect to a convenient affine cover of X.

(ii). Show that dim Γ
(
X,OX(mE)

)
= 1 for every m ≥ 0. What happens when m < 0?

(2). Let (X,OX) be a variety (over an algebraically closed field k), and let F be a
coherent OX-module. Show that F is the sheaf of sections of a vector bundle if and only
if F is locally free of some rank r, ie every point x ∈ X has a neighborhood U = Ux with
the property that F|U ∼= Or

X , ie the restriction of F to U is free of rank r.

(3). (Fibres of a sheaf.) Let (X,OX) be an algebraic variety, as always defined over an
algebraically closed field k. Given a point x ∈ X, denote by m = mx ⊆ OX the ideal
(sheaf) of all functions vanishing at x. Then

k(x) =def OX/m = O{x}

is the structure sheaf of x, which we can think of as a copy of the ground field k = k[{x}]
supported at x. Via extension by zero, we view k(x) as a coherent OX-module. (This
k(x) is often called a “sky-scraper sheaf,” since one visualizes it as a one-dimensional
vector space sticking out of X at the point x.)

Now let F be a coherent sheaf on X and set

F(x) = F/m · F
This is called the fibre of F at x (but the notation F(x) isn’t always standard). We can
view F(x) as a finite dimensional vector space over k = k(x).

(i). Show that if F = OX(F) is the sheaf of sections of a rank r vector bundle F, then

dimF(x) = r for every x ∈ X.
(In fact, one can identify F(x) as the fibre of F over x.)

(ii). Show that the function x 7→ dimk F(x) is Zariski-upper semicontinuous on X. That
is, for each ` ∈ N, the set

X` = {x | dimF(x) ≥ `}
is Zariski closed. (Hint: suppose that dimF(x) = `. Use Nakayama’s Lemma to show
that the stalk Fx is generated by ` elements as a module over OxX, and hence that
dimF(y) ≤ ` for all y in a neighborhood of x.)

(iii). Let X = Anm be the affine space of all n×m matrices. Then multiplication by the
matrix A = (xij) of variables defines a homomorphism of (locally free) sheaves

u : Om
X −→ On

X .
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Let F = coker(u). Describe the closed sets X` from (ii) in this example.

(iv). Continuing the line of thought of (iii), let u : E −→ F be a homomorphism of vector
bundles on a variety X, giving a homomorphism (that we also denote by u)

u : OX(E) −→ OX(F)

of the corresponding sheaves. Describe the dimensions of the fibres of the sheaf coker(u).
Is there a corresponding statement for ker(u)?
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