## **INEQUALITIES**

## ROBERT HOUGH

Problem 1. Let  $a_1, a_2, ..., a_n$  be real numbers such that  $a_1 + \cdots + a_n \ge n^2$  and  $a_1^2 + \cdots + a_n^2 \le n^3 + 1$ . Prove that  $n - 1 \le a_k \le n + 1$  for all k.

Problem 2. Let  $a_1, a_2, ..., a_n$  be distinct real numbers. Find the maximum of

$$a_1 a_{\sigma(1)} + a_2 a_{\sigma(2)} + \cdots + a_n a_{\sigma(n)}$$

over all permutations  $\sigma$  of  $\{1, 2, ..., n\}$ .

*Problem* 3. Prove that the finite sequence  $a_0, a_1, ..., a_n$  is a geometric progression if and only if

$$(a_0a_1 + a_1a_2 + \dots + a_{n-1}a_n)^2 = (a_0^2 + \dots + a_{n-1}^2)(a_1^2 + \dots + a_n^2).$$

Problem 4. Consider the positive real numbers  $x_1, ..., x_n$  with  $x_1x_2 \cdots x_n = 1$ . Prove that

$$\frac{1}{n-1+x_1} + \frac{1}{n-1+x_2} + \dots + \frac{1}{n-1+x_n} \le 1.$$

*Problem* 5. Let  $x_1, x_2, ..., x_n, n \ge 2$  be positive numbers such that  $x_1 + \cdots + x_n = 1$ . Prove that

$$\left(1+\frac{1}{x_1}\right)\cdots\left(1+\frac{1}{x_n}\right)\geqslant (n+1)^n.$$

*Problem* 6. Let  $x_1, x_2, ..., x_n$  be n real numbers such that  $0 < x_j \le \frac{1}{2}$ , for  $1 \le j \le n$ . Prove the inequality

$$\frac{\prod_{j=1}^{n} x_j}{\left(\sum_j x_j\right)^n} \leqslant \frac{\prod_{j=1}^{n} (1 - x_j)}{\left(\sum_j (1 - x_j)\right)^n}.$$

Problem 7. Let n > 2 be an integer, and let  $x_1, x_2, ..., x_n$  be positive numbers with the sum equal to 1. Prove that

$$\prod_{i=1}^{n} \left( 1 + \frac{1}{x_i} \right) \geqslant \prod_{i=1}^{n} \left( \frac{n - x_i}{1 - x_i} \right).$$

Problem 8. Show that for non-negative  $a_k, b_k, 1 \leq k \leq n$ , one has

$$\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} + \left(\prod_{k=1}^{n} b_{k}\right)^{\frac{1}{n}} \leqslant \left(\prod_{k=1}^{n} (a_{k} + b_{k})\right)^{\frac{1}{n}}.$$

Problem 9. Show that if  $f:[a,b] \to \mathbb{R}$  is convex and a < x < b, then one has

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a} \leqslant \frac{f(b) - f(x)}{b - x}.$$

*Problem* 10. Show that  $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$  implies  $\frac{\sin x}{x} = \prod_{k=1}^{\infty}\cos\frac{x}{2^k}$ .

Problem 11. Show that for complex numbers  $z_1, z_2, ..., z_n$  one has

$$\frac{1}{\pi} \sum_{j=1}^{n} |z_j| \leqslant \max_{I \subset \{1,2,\dots,n\}} \left| \sum_{j \in I} z_j \right|.$$