MATH 322, SPRING 2019 FINAL, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Let « : (6,¢) +— (cosfsin ¢, sinfsin ¢, cos ¢) be the spherical
coordinate map. Let w = xdy A\ dz + ydz A dx + zdx A dy. Calculate o*w.

Solution. We have
odx = — sin 0 sin ¢df + cos 0 cos pd¢
o*dy = cos 0 sin ¢pdf + sin 0 cos pd¢
a*dz = — sin ¢pd .
Hence
a*w = (cos 8 sin ¢)(cos O sin ¢df + sin 6 cos ¢pdp) A (— sin pde)
+ sin @ sin ¢(— sin ¢do) A (— sin 0 sin ¢df + cos 0 cos ¢pdo)
+ cos ¢(— sin 0 sin ¢pdf + cos 0 cos pdp) A (cos 6 sin ¢pdf + sin 6 cos ¢pdo)
= — cos? O sin® ¢df A dp — sin® 0sin® ¢df A do
— (sin’ 0 cos® ¢ sin ¢ + cos® § cos® ¢ sin ¢)dO A do
= —sinpdf N do.
Problem 2. Let w = e®*dz A dy + 23ydx A dz +sin(z)dz A dy. Calculate dw.

Solution. We have d(e®%?) = yze®™*dx + zze™dy + zye™*dz, d(zy) =
322ydx + 23dy and dsin z = cos zdz. Hence

dw = d(e™*)dx A dy + d(z*y)dz A dz + d(sin 2)dz A dy
= zye™*dz N dx A dy + 23dy A dx A dz + cos zdz A dx A dy
= (zye™* — 2 + cos z)dx A dy A dz.

Problem 3. Let C be the right circular cylinder {2% +¢y? < 1,0 < 2 < 5},
given the usual orientation in R?. Let

w = e“dx N dy.
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Calculate faO w.

Solution. We have dw = e*dx A dy A dz. By Stoke’s theorem

/w:/dw:/ e” =m(e’ —1).
oC C 22+92<1,0<2<5

Problem 4. Let w = > | ;dz;. Calculate fcw where C' is the oriented
curve

1
C = {cos(me),cos(47rt), ycos(2nmt) 1 0 <t < —} :

4
Solution. Let § = 3 >-" | #? so that df = w. Parameterize C' by
cos(27t)
r(1) = cos(.47rt) | 0<t< i
cos(émrt)
Hence,

fo-o(e(3) -0

Since cos(%)2 is 1 if k is even and 0 if k£ is odd. Hence 6 (f (%)) = % L%J
while 6(r(0)) = 5, so that the integral is

Le=zl3-3

Problem 5. Let T be the torus in RY, T = {2} + 23 = a? 23 + 23 = V*}.
Prove that T is orientable, and calculate its volume.

Solution. Parametrize T with patches (acoss,asins,bcost, bsint) with s,

in either (-7, 37”) or (—37”, ). The patches overlap positively, since they are

equal on the overlap. If « is one of the patches,

—asin s 0
a CoS S 0
Do = 0 —bsint

0 bcost
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Thus
V(Da) = (det(Da'Da))? = |ab).
Hence the volume is 472|ab|.

Problem 6. Let tr : Mat, ., = R, tr M = ). M;; be the trace map. Let O,
be the orthogonal group of n X n matrices. Calculate the moments

fOntr(M)dV
T [, v

fon(trM)de
T T v

mq

Solution. Since the volume integral is invariant under translation in the
orthogonal group, it is invariant under permuting the coordinates, and under
multiplying a row or column by —1. We have

/ tr(M)dV :/ > Mdv = n/ M;1dV = 0.
O, On On

Thus m; = 0.
Also,

/ tr(M)?dV = / (nM? + (n* — n) My Moy)dV
On On

= / nMEdV
On

= / zn:MfidV
)

nog=1

= / 1dV.
On

Problem 7. Let S" ! = {z € R" : ||z| = 1}. Let O, be the orthogonal
group of n X n matrices M,, which satisfy M! M, = I,,.

Hence my = 1.
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a. Given z € S" !, let O, be the orthogonal matrix which rotates ¢; to
z in the (e, z) plane while preserving their orientation, while leaving
the orthogonal complement of this plane fixed. Give a matrix repre-
sentation of O,.

b. Identify the (n — 1) x (n — 1) orthogonal group O,,_; with matrices
in O, whose first row and column are e;. Prove that each matrix
M, in O, has a unique representation as O M, _; with x € S"1 and
Mn—l € On—l-

c. Using the described coordinates, or otherwise, calculate the volume
of O,. It may be helpful to use that the volume on O, is invariant
under left and right translation, which was proved in the problems for

Midterm 2. This reduces to the case that x is a neighborhood of e;.

Solution.
. . . . 9 ~ ~ i
a. Given unit vector z # ey, write z = x1e; ++/1 — x7{Z where T = =.

1-z7

Let cosf = z1, sinf = /1 — 22. Rotation by 6 in the ¢,, Z plane maps

€ — T1€e + \/ 1 — x%i?

T+— — 1—:13%@1—1—33@.

Projection in the orthogonal plane is given by I — e el — ZZ'. Hence a
general vector v is mapped to

.e)) (xlgl v MQ + (v, Z) <—m§1 + a:@) +

+ (I — eref — 22w

Hence, letting 2’ be the last n — 1 components of z as a vector in R" 1,

Op = z1€1€] + /1 — afie] — /1 —ale @’ + 122" + I — ey} — &'
ZE/ t

_(m @)
S\ LR



b.

M
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Let z be the first column of M,, € O,,. Then O, 1M, has first column
and first row e, hence is a matrix in O,,_; embedded in O,, as described.
This proves that the map is onto. The uniqueness follows since O, M,,_;
has first column equal to .

. Let S(z,§) be the set of matrices in O,, whose first column has distance

from z at most . Then O, - S(e;,0) = S(z,9). Since the volume form
on O, is invariant under left translation, Vol S(z,d) = Vol S(e;,d) for
all z € S" ! and hence is equal to a constant ¢ times the volume

of {y € sn-b . d(y,e;) < 0}. It follows that the volume of O, is
cVol(S" 1) = CI%?Z).

To calculate the constant ¢, let § be coordinates on M,, 1 in a neigh-
borhood of the identity, identified with § = 0, and parametrize S"~!

2 2
\/1_61_"'_%1
1

€

near e; by x = . Thus the coordinate chart is

€n—1
given by

\/1—5%—~--—ei_1 ey — ey
o €1 1 0
- ; I [ \o ma9)

€€
n-l 1+\/176%7"'76n71

This coordinate chart can be translated arbitrarily on the right by
a matrix from M,,_; without changing the first column, so that to
calculate the volume, it suffices to determine the volume form when
0 = 0 and for € in a neighborhood of the identity.
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We have, at e = = 0,

/() 0 -« —1 --- 0
0 \
oM | : oM (0 0
e, |1 0 0 TN

\0 /
in which the —1 occurs in the first row, ¢ + 1st slot, and the 1 occurs
in the first column, 7 + 1st row. Since

V(DM) = (det DM'DM)?
and DM!'DM has entries of type,

jg:(aﬂ4ﬁj§Ey§ﬁy §£:¢aﬂ4£j§i%éﬁa jg:(aﬂ4@jaﬂ4ﬁj
1,J 1,J i,J

86[ @Em 651 8€m (9(51 8(5m’

at € = 0 = 0 those cross terms with derivatives in § and e are 0, so
that the matrix DM'DM has two blocks, corresponding to the ¢ and
§ variables. The ¢ has determinant V (DM, _1)? on O,_1, while the
¢ matrix is 2I,,_; and hence has determinant 2"~!. Hence V(DM) =
2"2 V(DM,_1). Meanwhile, the chart

2 2
\/1_61_"'_%1

€1

€n—1

0
Dz(0) = (In—1>
and hence has V(Dz(0)) = 1. Thus

has

V(DM(0,0)) = 27 V(Dz(0))V (DM,_1(0)).
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By right invariance of V' under multiplication by elements of M,, 1, this
is invariant under right multiplication by elements of M,,_;. By conti-
nuity of V', the constant is essentially unchanged in a neighborhood of
e, in S"7 1. Tt follows that

Vol(0,) = 2"7 Vol(5" ) Vol(O,_).

N3

Iterating this identity, together with the formula Vol(S"™!) = 127(7

)

I3

obtains the formula

n(n—1 27'('% n(n+3) n(nt+l) 1
Vol(0,) = 2" oM _
1155 I3

This formula was first obtained by Hurwitz.

Problem 8. Let S' = {(z,y) € R? : > + 4> = 1} be the unit circle. Let
7,6 : ST — R3 be non-intersecting smooth loops, so (s) # d(t) for all s, t.
Define F, 5(s,t) = v(s) — d(t). Let

1 . [(xdy Ndz+ydz Ndx + zdy N\ dz
0(7,0) == — 7,0 2 2 1 .23
47 Slx Sl (x +y-+z )2

be the linking number. Prove

a. {(7,9) is unchanged if v and § are continously deformed without inter-
secting.

b. ¢(v,0) € Z.

c. If y(s) = (cos s,sin s,0) for s € [0, 27] and 6(¢) = (=143 cost, 0, 1 sint)
for t € [0, 2x], then ¢(v,6) = 1.

Solution.

a. Let
_xdy Ndz +ydz Ndx + zdx N dy

(22 + 12 + 2?)2
It is straightforward to check that df; = 0. The fact that ¢(v,d) is

unchanged under homotopy follows from the Lemma from Lecture on
the change of the integral of a closed form under homotopy.
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b. Perform a homotopy which translates  continuously to a large translate
T after which ¢ and ~ are separated by a hyperplane. In this case the
curve y(t) — §(s) is separated from 0 by a hyperplane, so the resulting
surface is contractible. Hence, after translation, the integral is 0. The
integral varies continuously except at points where the paths intersect.
At a point of intersection, deform both paths by a small semi-circular
loop on either side of the intersection point. The difference between
the paths prior to intersection and post intersection is thus homotopic
to a curve as in part c, hence contributes an integer change.

c. The surface

1 1
v(s) —o(t) = (1 + coss — §cost,sin 5 =5 sint)

is a torus containing 0. Slice the torus with two planes to cut away the
part containing 0. The remaining surface is contractible in R3 \ {0}.
The cut part is homotopic to a sphere centered at 0. Integrating 63
over a sphere centered at 0 gives 1.



