MATH 311, FALL 2020 PRACTICE MIDTERM 2

OCTOBER 28

Each problem is worth 10 points.
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Problem 1. Define an elliptic curve and give the addition law for points on
an elliptic curve. Prove that the addition law is commutative.

Solution. Let f(x,y) be a cubic polynomial with real coefficients. Cy(R)
is an elliptic curve if f(x,y) is irreducible over R with no singular point in
Py(R). Declare a point on the curve 0. Define a binary operation on points by
AB is the third point on the line connecting AB, counted with multiplicity.
Evidently AB = BA. Then A+ B = 0(AB). Notice 0(AB) = 0(BA) so the
addition is commutative.
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Problem 2.

a. Define the Hamiltonians used in the proof of Lagrange’s theorem on
the sum of four squares.

b. Prove that if ¢; and ¢» are Hamiltonians, the norm of ¢; ¢ is the product
of the norms.

Solution.

a. The Hamiltonians are the Z-linear span of 1,1, 7, k where 7, j, k generate
the quaternion group 2 = j2 = k> = —1,ij = —ji = k, jk = —kj = 1,
ki = —ik = 3.

b. The norm of a Hamiltonian ¢ = a+bi+cj+dk is N(q) = a* +b*+* +
d?>. The norm identity can be proved by expanding the product and
collecting terms, but an easier proof is as follows. Define ¢ = a — bi —
cj — dk. The conjugate satisfies 1z = @2 - 1. Then ¢7 = q7 = N(q)
is an integer. Now we can check N(q1¢2) = 121Gz = Q142G + 1 =
@1 N (2)q1 = N(q1)N(g2).
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Problem 3.

a. State the principle of inclusion and exclusion.

b. A permutation o : {1,2,...n} — {1,2,...,n} is a derangement if
o(7) # j for all j. Using the principle of inclusion and exclusion or
otherwise, calculate the number of permutations of {1,2,...,n} which
are derangements.

Solution.
a. The inclusion and exclusion principle states that if S, S,,..., S, are
subsets of a finite set S, then

s s
=1

b. Let E; = {0 : o(i) = i}. Thus we wish to count |5, \}_; Ej|. Since
for j1 < jo < ... < g, Ej, N...NEj, fixes ji, ..., jr and permutes the
remaining n—k indices, this set has size (n—k)!. There are (}) = Wlk)'

ways of picking £ fixed indices. Thus the number of derangements is

=[S = D 1S+ D 1SN 8 — o4+ (=D)"S1N SN . N Sy

1 1<J

n

> (=Df (Z) (n — k)l = n! kzn% (—kll)’f_

k=0




MATH 311, FALL 2020 PRACTICE MIDTERM 2 5

Problem 4. Given infinite continued fraction (ag, a1, as, ...) define recursive
sequences

ho=0,h1=1, hy = ajhi1+ hi 2
ko=1,k1=0, ki =aki1+ ki o.
Explain why r, = Z— gives the sequence of convergents to the continued

fraction and prove that (r,) converges.

Solution. We have hg = ag, kg = 1 sorg = Z—g is the first convergent. Assume

inductively that (ag, ay, ..., a,) = Z—: Then
Tnt+l = <a0,a1, ---,an,an+1>
o (an + #ﬂ)hn—l =+ hn—2
(an + an1+1)kn—l + kn—2
_ an—i—l(anhn—l + hn—2) + hn—l L hn+1

an—i—l(ankn—l + kn—?) + kn—l B kn—f—l .
hn—l hn 0 1 . hn hn—i—l
kn—l kn 1 An+1 N kn kn—H

kn-1 k,) \1 O 1 ay/) " \1 a,/)

It follows that h,,_1k, — hyk,—1 = (—1)". Thus
hnkn—l - hn—lkn . (_1)71—1
kn—lkn B kn—lkn .

Since k,,_1k, increases to infinity with n, the limit of (r,) exists by the alter-
nating series test applied to the successive differences.

We have

and thus

Tn —Th—1=
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