MATH 311, FALL 2020 PRACTICE MIDTERM 2

OCTOBER 28

Each problem is worth 10 points.

 $2\,$ $\,$ $\,$ $\,$ $\,$ $\,$ OCTOBER 28

Problem 1. Define an elliptic curve and give the addition law for points on an elliptic curve. Prove that the addition law is commutative.

Solution. Let $f(x, y)$ be a cubic polynomial with real coefficients. $C_f(\mathbb{R})$ is an elliptic curve if $f(x, y)$ is irreducible over $\mathbb R$ with no singular point in $\mathbb{P}_2(\mathbb{R})$. Declare a point on the curve 0. Define a binary operation on points by *AB* is the third point on the line connecting *AB*, counted with multiplicity. Evidently $AB = BA$. Then $A + B = 0(AB)$. Notice $0(AB) = 0(BA)$ so the addition is commutative.

Problem 2.

- a. Define the Hamiltonians used in the proof of Lagrange's theorem on the sum of four squares.
- b. Prove that if q_1 and q_2 are Hamiltonians, the norm of q_1q_2 is the product of the norms.

Solution.

- a. The Hamiltonians are the Z-linear span of 1*, i, j, k* where *i, j, k* generate the quaternion group $i^2 = j^2 = k^2 = -1$, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.
- b. The norm of a Hamiltonian $q = a + bi + cj + dk$ is $N(q) = a^2 + b^2 + c^2 +$ d^2 . The norm identity can be proved by expanding the product and collecting terms, but an easier proof is as follows. Define $\overline{q} = a - bi$ *cj* − *dk*. The conjugate satisfies $\overline{q_1q_2} = \overline{q_2} \cdot \overline{q_1}$. Then $q\overline{q} = \overline{q\overline{q}} = N(q)$ is an integer. Now we can check $N(q_1q_2) = q_1q_2\overline{q_1q_2} = q_1q_2\overline{q_2} \cdot \overline{q_1} =$ $q_1N(q_2)\overline{q_1} = N(q_1)N(q_2)$.

4 OCTOBER 28

Problem 3.

a. State the principle of inclusion and exclusion.

b. A permutation σ : $\{1, 2, ..., n\}$ \rightarrow $\{1, 2, ..., n\}$ is a derangement if $\sigma(j) \neq j$ for all *j*. Using the principle of inclusion and exclusion or otherwise, calculate the number of permutations of $\{1, 2, ..., n\}$ which are derangements.

Solution.

a. The inclusion and exclusion principle states that if $S_1, S_2, ..., S_n$ are subsets of a finite set *S*, then

$$
\left| S \setminus \bigcup_{i=1}^{n} S_{i} \right| = |S| - \sum_{i} |S_{i}| + \sum_{i < j} |S_{i} \cap S_{j}| - \dots + (-1)^{n} |S_{1} \cap S_{2} \cap \dots \cap S_{n}|.
$$

b. Let $E_i = \{\sigma : \sigma(i) = i\}$. Thus we wish to count $|S_n \setminus_{j=1}^n E_j|$. Since for $j_1 < j_2 < ... < j_k$, $E_{j_1} \cap ... \cap E_{j_k}$ fixes $j_1, ..., j_k$ and permutes the remaining $n-k$ indices, this set has size $(n-k)!$. There are $\binom{n}{k}$ $\binom{n}{k} = \frac{n!}{k!(n-1)!}$ *k*!(*n−k*)! ways of picking *k* fixed indices. Thus the number of derangements is

$$
\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (n-k)! = n! \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}.
$$

Problem 4. Given infinite continued fraction $\langle a_0, a_1, a_2, \ldots \rangle$ define recursive sequences

$$
h_{-2} = 0
$$
, $h_{-1} = 1$, $h_i = a_i h_{i-1} + h_{i-2}$
 $k_{-2} = 1$, $k_{-1} = 0$, $k_i = a_i k_{i-1} + k_{i-2}$.

Explain why $r_n = \frac{h_n}{k_n}$ $\frac{h_n}{k_n}$ gives the sequence of convergents to the continued fraction and prove that (r_n) converges.

Solution. We have $h_0 = a_0, k_0 = 1$ so $r_0 = \frac{h_0}{k_0}$ $\frac{h_0}{k_0}$ is the first convergent. Assume inductively that $\langle a_0, a_1, ..., a_n \rangle = \frac{h_n}{k_n}$ $\frac{h_n}{k_n}$. Then

$$
r_{n+1} = \langle a_0, a_1, ..., a_n, a_{n+1} \rangle
$$

=
$$
\frac{(a_n + \frac{1}{a_{n+1}})h_{n-1} + h_{n-2}}{(a_n + \frac{1}{a_{n+1}})k_{n-1} + k_{n-2}}
$$

=
$$
\frac{a_{n+1}(a_n h_{n-1} + h_{n-2}) + h_{n-1}}{a_{n+1}(a_n k_{n-1} + k_{n-2}) + k_{n-1}} = \frac{h_{n+1}}{k_{n+1}}.
$$

We have

$$
\begin{pmatrix} h_{n-1} & h_n \ k_{n-1} & k_n \end{pmatrix} \begin{pmatrix} 0 & 1 \ 1 & a_{n+1} \end{pmatrix} = \begin{pmatrix} h_n & h_{n+1} \ k_n & k_{n+1} \end{pmatrix}
$$

and thus

$$
\begin{pmatrix} h_{n-1} & h_n \ k_{n-1} & k_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \ 1 & a_0 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \ 1 & a_n \end{pmatrix}.
$$

It follows that $h_{n-1}k_n - h_n k_{n-1} = (-1)^n$. Thus

$$
r_n - r_{n-1} = \frac{h_n k_{n-1} - h_{n-1} k_n}{k_{n-1} k_n} = \frac{(-1)^{n-1}}{k_{n-1} k_n}.
$$

Since $k_{n-1}k_n$ increases to infinity with *n*, the limit of (r_n) exists by the alternating series test applied to the successive differences.

 $6\hskip 4.5cm {\rm OCTOBER}$ 28