MATH 311, FALL 2020 PRACTICE MIDTERM 1 SOLUTIONS

SEPTEMBER 23

Each problem is worth 10 points.

Problem 1. Find all pairs of integers (x, y) such that 23x + 81y = 1 and explain why your list is complete.

Solution 1. Since $81 = 3^4$ is co-prime to 23, the solution may be found by the Euclidean algorithm.

$$81 = 3 \cdot 23 + 12$$

 $23 = 1 \cdot 12 + 11$
 $12 = 1 \cdot 11 + 1$.

Working backward,

$$1 = 12 - 11$$

$$= 2 \cdot 12 - 23$$

$$= 2 \cdot (81 - 3 \cdot 23) - 23$$

$$= 2 \cdot 81 - 7 \cdot 23.$$

The general solution is then

$$(2+23t)81 - (7+81t)23.$$

Problem 2. Find a reduced quadratic form $ax^2 + bxy + cy^2$, satisfying either $-|a| < b \le |a| < |c|$ or $0 \le b \le |a| = |c|$, which is equivalent to $2x^2 + 5xy + y^2$.

Solution 2. First make the change $x \mapsto y$, $y \mapsto -x$ to obtain $2x^2 + 5xy + y^2 \sim x^2 - 5xy + 2y^2$. Next substitute x with x + 3y to obtain

$$2x^2 + 5xy + y^2 \sim x^2 + xy - 4y^2,$$

which is reduced.

Problem 3.

- a. State Hensel's Lemma.
- b. Find a solution to $x^2 \equiv 5 \mod 19^2$.

Solution 3.

- a. Hensel's lemma states that if $f(x) \equiv 0 \mod p^j$ and $f'(x) \not\equiv 0 \mod p$, then there is a unique $y \equiv x \mod p^j$ such that $f(y) \equiv 0 \mod p^{j+1}$.
- b. Check by examination that 9, 10 are solutions to $x^2 \equiv 5 \mod 19$. For $f(x) = x^2 5$, $f'(x) = 2x \not\equiv 0$ for both solutions. Expand $(9 + 19t)^2 \equiv 5 + (4 \cdot 19) + 19 \cdot 18 \cdot t \mod 19^2$

and hence t = 4 obtains a solution x = 85. The other solution is -85.

Problem 4.

- a. State the Pigeonhole Principle.
- b. Prove that there are integers a, b with $|a|, |b| \le 1000$, not both zero, such that $|a + b\sqrt{2}| < \frac{1}{200}$.

Solution 4.

- a. If $f: S \to T$ is a map of finite sets, with |S| > |T|, then $|f^{-1}(t)| > 1$ for some $t \in T$.
- b. Divide the interval $[0, 1000(1 + \sqrt{2})]$ into 10^6 equal size pieces, each of length $\frac{1+\sqrt{2}}{1000}$. Consider the points $\{a+b\sqrt{2}:0\leq a,b\leq 1000\}$. Since there are more than 10^6 such points, two occupy the same interval, and hence differ by at most $\frac{1+\sqrt{2}}{1000}<\frac{1}{200}$.