MATH 311, FALL 2024 MIDTERM 2 OCTOBER 30 Each problem is worth 10 points. 2 OCTOBER 30 **Problem 1.** Use the secant method starting with the point (1,0) to find all of the rational points on the ellipse $x^2 + 5y^2 = 1$. **Solution.** Let m be the slope of a line through (1,0) and a second rational point, so that the line has equation y=m(x-1). This line intersects the curve where $x^2+5m^2(x-1)^2-1=0$. Factoring out the x-1, $(x+1+5m^2(x-1))(x-1)=0$ which gives the new solution $(5m^2+1)x=(5m^2-1)$ or $x=\frac{5m^2-1}{5m^2+1}$. At the intersection, $y=m(x-1)=\frac{-2m}{5m^2+1}$. # Problem 2. - a. Define the Farey fractions of level n. - b. Assuming standard facts about the Farey fractions, prove that for any real number x, there is a rational $\frac{a}{b}$ such that $0 < b \le n$ and $$\left|x - \frac{a}{b}\right| \le \frac{1}{b(n+1)}.$$ #### Solution. - a. The Farey fractions of level n are those fractions $\frac{a}{b}$ in lowest terms, written in increasing order, with $0 \le \frac{a}{b} \le 1$ and with $b \le n$. - b. Let $\frac{a}{b} \leq x < \frac{c}{d}$ be consecutive Farey fractions. The fraction $\frac{a+c}{b+d}$ is the next Farey fraction to be added between $\frac{a}{b}$ and $\frac{c}{d}$, and has $b+d \geq n+1$ since it does not appear at level n. Then either $x \leq \frac{a+c}{b+d}$ or $x > \frac{a+c}{b+d}$. In the first case, $|x \frac{a}{b}| \leq \frac{a+c}{b+d} \frac{a}{b} = \frac{1}{b(b+d)} \leq \frac{1}{b(n+1)}$, while in the second case, $|x \frac{c}{d}| \leq \frac{c}{d} \frac{a+c}{b+d} = \frac{1}{d(b+d)} \leq \frac{1}{d(n+1)}$. 4 OCTOBER 30 #### Problem 3. - a. Give a proof that any rational $\frac{a}{b}$ has a unique continued fraction expansion whose last term is not equal to 1. - b. Find the continued fraction expansion of $\sqrt{3}$. #### Solution. - a. Starting from $q = \frac{c}{d}$, we choose $q_0 = q$, $a_0 = \lfloor q \rfloor$, and in general $a_i = \lfloor q_i \rfloor$ and, while $a_i \neq q_i$, $q_{i+1} = \frac{1}{q_i a_i}$. This process takes the same steps as running the Euclidean algorithm starting with c and d and hence terminates in a finite number of steps, giving a finite continued fraction representation for q. If $q = \langle a_0, a_1, ..., a_n \rangle$ with $a_n = 1$ then $q = \langle a_0, ..., a_{n-1} + 1 \rangle$ so we may assume the last digit is not equal to 1. Given two representations $q = \langle a_0, ..., a_n \rangle = \langle b_0, ..., b_j \rangle$ with $a_n, b_j > 1$ we have $q_0 = q = a_0 + \frac{1}{q_1}$ with $q_1 > 1$ and hence $a_0 = \lfloor q_0 \rfloor = b_0$. Subtracting off the first digit and inverting, then repeating this process we conclude all the digits are the same. - b. We know from lecture $\lfloor \sqrt{3} \rfloor + \sqrt{3} = 1 + \sqrt{3}$ has purely periodic continued fraction representation. Given $\xi_0 = 1 + \sqrt{3}$, $a_0 = 2$ and $\xi_1 = \frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{2}$. Thus $a_1 = 1$ and $\xi_2 = \frac{2}{\sqrt{3}-1} = \sqrt{3}+1$. Thus $\sqrt{3} = \langle 1, \overline{1, 2} \rangle$. ### Problem 4. - a. State Minkowski's convex body theorem from the geometry of numbers. - b. Show that any lattice Λ of covolume 1 in the plane \mathbb{R}^2 contains a non-zero point (x,y) with $x^2+y^2\leq \frac{4}{\pi}$. ## Solution. - a. Let $\mathcal{C} \subset \mathbb{R}^n$ be convex, centrally symmetric and have volume greater than 2^n . Then \mathcal{C} contains a lattice points of \mathbb{Z}^n other than 0. - b. The theorem in part a remains valid if the inequality greater than 2^n is replaced with $\geq 2^n$ if the set is closed and bounded and if the lattice points \mathbb{Z}^n are replaced with any lattice of covolume 1. Changing between the general lattice and the lattice \mathbb{Z}^n amounts to multiplication by a matrix of determinant 1, which leaves volumes unchanged and preserves the properties of being closed, convex, bounded and centrally symmetric. To check the claim about being closed and bounded, let \mathcal{C} be closed, bounded, centrally symmetric and convex with volume 2^n . Then $\mathcal{C}_k = (1+1/k)\mathcal{C}$ has volume $> 2^n$, so contains a non-zero lattice points x_k . Since \mathcal{C} is bounded, some x_k occurs infinitely often, and hence is in the intersection $\mathcal{C} = \bigcap \mathcal{C}_k$. The problem is now solved by noticing the disc $x^2 + y^2 \leq \frac{4}{\pi}$ has volume 4, is closed, bounded, convex and centrally symmetric. 6 OCTOBER 30