- 1. Prove that the intersection of two closed sets is closed (you have to write down a proof using the definition of closed set.)
- 2. Give a topology on a set X, for which there exists a non-empty subset A of X, such that $A \neq X$ and A is both open and closed.
- 3. Prove that the union of two closed sets is closed. (You can assume your sets are in \mathbb{R}^n but it is not necessary).
- 4. Consider $X = \mathbb{R}$. What are the limit points of the following subsets
 - a \mathbb{Q} , the set of rational numbers.
 - b $[1,2] \cap \{3\}$
 - c $\mathbb{R} \setminus \mathbb{Z}$.
 - d The graph of the function f from the set of positive real numbers to the \mathbb{R} , defined by $f(x) = \sin(1/x)$.
- 5. Give an examples of two subsets of \mathbb{R}^2 , X, Y, such that $X \subset Y$, B is open in A, and A is not open in \mathbb{R}^2 .
- 6. Let $X = [1, 2] \cap \{3\}$. Determine whether the following subsets X are open on closed in X.
 - a {3}
 - b {1}
 - c [1, 1/2).
- 7. Consider $X = \{(x, y) \in \mathbb{R}^2 : x \leq 1 y, -1 \leq x \leq 1, \text{ and } x \geq y 1\}$ and the relation \sim on X given by
 - a (P, P) for all P in X.
 - b $(x, 1 x) \sim (x, 0)$ for all $x \in [0, 1]$
 - c $(x, 0) \sim (x, 1 x)$ for all $x \in [0, 1]$
 - d $(x, 1+x) \sim (x, 0)$ for all $x \in [-1, 0]$
 - e $(x, 0) \sim (x, 1+x)$ for all $x \in [-1, 0]$

Prove that \sim is an equivalence relation and find X/\sim .

- 8. Consider the set $X = \{1, 2, 3, 4\}$ and the list of subsets of $X, L = \{\{1, 2\}, \{2, 3\}\}$.
 - a Explain why L is not a topology on X.
 - b Add the smallest possible number of subsets to L to obtain a topology.

c Determine whether the topology you obtained in b is Hausdorff.

9. Let $X = \{1, 2, 3\}$, and $T = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$.

a Prove that T is a topology on X.

b Find a function from X to \mathbb{R} that is not continuous.

10. Problems 1.2: 22 an 24.