For problemsn 1, 2 and 3, a set X and a surjective function f from X to a set Y is given. This defines an equivalence relation R on X, in the following way. A pair $(x, y) \in X \times X$ is in the relation R if $f(x)=f(y)$. You have to describe the quotient topology on the set X / \equiv.

Problem 1

$X=[0,1], f(x)= \begin{cases}x & \text { if } x \notin\{0,1 / 2,1\} \\ 0 & \text { otherwise } .\end{cases}$

Problem 2

$X=[0,1] \times[0,1]$ (a unit square), $f(x, y)= \begin{cases}(x, y) & \text { if } x \neq 0 \\ (1,1-y) & \text { if } \mathrm{x}=0\end{cases}$

Problem 3

$X=\left\{(x, y) / x^{2}+y^{2} \leq 1\right\}$ (the closed unit ball). The map f goes from X to the interval $[0,1], f(x, y)=x^{2}+y^{2}$.

Problem 4

$X=\left\{(x, y) / x^{2}+y^{2} \leq 1\right\}$ (the closed unit ball). The equivalence relation contains all pairs of points $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ such that one of the following holds

1. $x=x^{\prime}$ and $y=y^{\prime}$
2. $x^{2}+y^{2}=x^{\prime 2}+y^{\prime 2}=1$
either $x=x^{\prime}$ and y

Problem 5

Problem 28 of Section 1.1 of the textbook.

Problem 6

Let $X=\{a, b, c, d\}$. Determine which of the lists of subsets of X given in Figure 1 is a topology. Justify your answer. In each case, we assume that the list contains the empty set.

Figure 1: Which are topologies?

