MAT 568

Topics: Hadamard's Theorem, Spaces of Constant Curvature

Reading

 \bullet do Carmo, Chapter 7, 8.1–8.4

EXERCISES (TO DO ON YOUR OWN)

- (1) Find a local diffeomorphism $f: M \to N$ that is not a covering map. Also, put a complete Riemannian metric g on N such that f^*g is not complete on M.
- (2) Prove that every manifold M admits a complete Riemannian metric. One way to do this is suggested as follows. Without loss of generality, say M is connected, and start with any metric. Let U_n be an infinite sequence of open sets whose union is M and such that U_n is compact and contained in U_{n+1} . Try to make the metric "big" on $U_{n+1} \setminus U_n$, and invoke exercise 5 of Chapter 7 of do Carmo. Why does such a sequence $\{U_n\}$ exist?
- (3) Let M be a complete, simply-connected Riemannian manifold containing a pole p. This means p has no conjugate points. What can you conclude about the topology of M? Find a surface of strictly positive curvature that contains a pole.

PROBLEMS (TO TURN IN)

- (a) do Carmo, Chapter 8, exercise 4, pg. 181 (Lens spaces, closed geodesics)
 - (b) Find a non-cyclic finite group acting on S^3 properly discontinuously by isometries.
 - (c) s Find a group action on S^3 by isometries that is not properly discontinuous.
- (2) do Carmo, Chapter 8, exercise 9, pg. 186 (connection of Riemannian submersion). Read exercise 8 for the definition.
- (3) do Carmo, Chapter 8, exercise 10, pg. 186 (curvature of Riemannian submersion).
- (4) do Carmo, Chapter 8, exercise 14, pg. 190 (locally symmetric spaces and reversing geodesics)