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ABSTRACT. In the first part of this paper we study combinatorics and
geometry of the Yoccoz puzzle. We prove that the moduli of the principal
nest of annuli grow at least linearly, and derive from there @ prior: bounds
for a certain class of infinitely renormalizable quadratics. In the second
part we prove for these quadratics local connectivity of the Julia and the
Mandelbrot sets. Density of hyperbolic maps in the real quadratic family
follows.
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1. INTRODUCTION

Rigidity is a fundamental phenomenon in hyperbolic geometry and holomorphic
dynamics. Its meaning is that the metric properties of certain manifolds or dynam-
ical systems are determined by their combinatorics. Celebrated works of Mostow,
Thurston, Sullivan, Yoccoz, among others, provide us with examples of rigid objects.
Moreover, this phenomenon is intimately linked to the universality phenomenon, to
basic measure-theoretical and topological properties of systems, to the problem of
describing typical systems.

In the set up of holomorphic dynamics the general rigidity problem can be posed
as follows:

Rigidity Problem. Any two combinatorially equivalent rational maps are quasi-
conformally equivalent. Except for the Lattés examples, the quasi-conformal defor-
mations come from the dynamics on the Fatou set.

Though the general problem is still far from being solved, there have been recently
several breakthroughs in the quadratic case when the problem is equivalent to the
famous MLC Conjecture (“the Mandelbrot set is locally connected” ). In this case
the problem has been directly linked to the Renormalization Theory. In 1990 Yoccoz
proved MLC for all parameter values which are at most finitely renormalizable. In
this paper we will prove MLC for a certain class of infinitely renormalizable maps.
To this end we carry out a geometric analysis of Julia sets which has already found
a number of other interesting applications.

Our analysis exploits a new powerful tool called “puzzle”. It was introduced
by Branner and Hubbard [BH] for cubic maps with one escaping critical point
and by Yoccoz for quadratics (see [H], [M2]). The main geometric result of these
works is the divergence property of moduli of a certain nest of annuli (provided the
map is non-renormalizable). This implies that the corresponding domains (“puzzle
pieces”) shrink to points, which yields, for a non-renormalizable quadratic, local
connectivity of the Julia set. Transferring this result to the parameter plane yields
local connectivity of the Mandelbrot set at the corresponding parameter values.

The geometric results of Branner-Hubbard and Yoccoz don’t contain information
on the rate at which the pieces shrink to points. In this work we tackle this problem.
We consider a smaller nest V° O V! O ... of puzzle pieces called principal, and
prove that the moduli of the annuli A" = V"~! \ V" grow at linear rate over a
certain combinatorially specified subsequence of levels:
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Theorem IIT (moduli growth). Let n(k) counts the non-central levels in the
principal nest {V"}. Then
mod A”*)+? > Bk,

where the constant B depends only on the first modulus u; = mod A'.

To gain control of the first principal modulus, mod A', we consider a class SL
of quadratics satisfying the secondary limbs condition. This class, in particular,
contains

e Maps which are at most finitely renormalizable and don’t have non-repelling
periodic points (Yoccoz class);

e Infinitely renormalizable maps of bounded type;
e Real maps which don’t have non-repelling periodic points.

In §4, Theorem I, we construct, for maps of class S£, a dynamical annulus A!
with a definite modulus.

A basic geometric quality of infinitely renormalizable maps are a priori bounds.
They provide a key to the renormalization theory, problems of rigidity and local
connectivity. In this paper we prove a priori bounds for maps of class SL£ with
sufficiently big combinatorial type (§7, Theorems IV and IV’).

Being specified for real quasi-quadratic maps of Epstein class, this result yields
complex bounds on every renormalization level with sufficiently big “essential pe-
riod” (§8, Theorem V). In a more recent work [LY] complex bounds were established
for maps with essentially bounded combinatorics. Altogether this yields:

Complex Bounds Theorem (joint with Yampolsky). Let f be an infinitely
renormalizable quasi-quadratic map of Epstein class. Then for all sufficiently big
m, the renormalization R™ f is quadratic-like with a definite modulus: mod R™ f >
@ >0, with an absolute p. If f is a quadratic polynomial, this occurs for all m.

This result was independently proven by Levin & van Strien [LS].
In Part II we use the above geometric information to prove the following result:

Rigidity Theorem. Any combinatorial class contains at most one quadratic poly-
nomial satisfying the secondary limbs condition with a priori bounds.

We also show that the quadratics satisfying the above assumptions have locally
connected Julia sets (Theorem VI, §9). In particular, all real quadratics have locally
connected Julia sets (see also [LS]).

Conjecture. The secondary limbs condition implies a priori bounds.

Let QC(c) C Top(c) C Com(c) C C stand respectively for the quasi-conformal,
topological and combinatorial classes of the quadratic map P.. A map P, is called
combinatorially (respectively topologically or quasi-conformally) rigid if Com(c) =
{c} (respectively Top(c) = {c} or QC(c) = {c}).

The strongest, combinatorial, rigidity of a map P. turns out to be equivalent to
the local connectivity of the Mandelbrot set M at ¢ (see [DH1, Sc1]). This property
of M was conjectured by Douady and Hubbard under the name “MLC”.
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Corollary 1.1. For a quadratic polynomial P. € SL of a sufficiently big type (that
is, satisfying the assumptions of Theorem IV') the Julia set J(f) is locally connected,
and the Mandelbrot set is locally connected at c.

In particular, this gives first examples of infinitely renormalizable parameter val-
ues ¢ € M of bounded type where MLC holds (though one needs a minor part of
Corollary 1.1 to produce some examples of such kind).

One might wonder of how big is the set of infinitely renormalizable parameter
values satisfying the assumptions of Corollary 1.1. It is obviously dense on the
boundary of the Mandelbrot set. We can show that this set has Lebesgue measure
zero and Hausdorff dimension at least 1 [L.10]. Note that 1=(1/2)2 where 2 =
HD(0M) by Shishikura’s Theorem [Sh1].

Let us now dwell on the case of real parameter values ¢ € [—2,1/4]. Corollary 1.1
implies MLC (and thus complex rigidity) at real ¢ with sufficiently big “essential
period” on all renormalization levels (§12, Theorem VIII). For the rest of real pa-
rameters the Rigidity and Complex Bounds Theorems imply a weaker property, real
rigidity. Let us say that a parameter value ¢ € R (or the corresponding quadratic
polynomial P,) is rigid on the real line if Com(c) NR = {c}. Thus we have:

Density Theorem. Any real quadratic polynomial P. without attracting cycles
is rigid on the real line. Thus hyperbolic quadratics are dense on the real line.

(The latter statement follows from the former by the Milnor-Thurston kneading
theory [MT]).

Among other applications of the above results are the proof of the Feigenbaum-
Coullet-Tresser Renormalization Conjecture [L9] and an advance in the problem of
absolutely continuous invariant measures (joint with Martens & Nowicki [L8, MN]).

Let us now describe the structure of the paper.

In §2, we overview the necessary preliminaries in holomorphic dynamics, partic-
ularly Douady-Hubbard renormalization and the Yoccoz puzzle.

In §3 we present our approach to combinatorics of the puzzle. The main concepts
involved are the principal nest of puzzle pieces, generalized renormalization and
central cascades. As we indicated above, the principal nest V° > V! 5 ... contains
the key combinatorial and geometric information about the puzzle. We describe
the combinatorics of this nest by means of generalized renormalizations, that is,
appropriately restricted first return maps considered up to rescaling,.

It may happen that a quadratic-like map g, : V" — V"~! has "almost connected”
Julia set. This phenomenon often requires a special treatment. Such a map gener-
ates a subnest of the principal nest called a central cascade. The number of central
cascades in the principal nest is called the height x(f) of a map f. In other words,
x(f) is the number of different quadratic-like germs among the g¢,’s. It will play a
crucial role for our discussion.

In §4 we study the initial geometry of the puzzle. The main result of this section is
the construction of an initial annulus A' = V'~ V! with definite modulus, provided
the hybrid class of a map is selected from a truncated secondary limb (Theorem I).
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In §5 we define a new geometric parameter (worked out jointly with J. Kahn), the
asymmetric modulus, and prove that it is monotonically non-decreasing when we go
through the principal nest (Theorem II). This already provides us with lower bounds
for the principal moduli g, = mod A" (which, by the way, implies the Branner-
Hubbard-Yoccoz divergence property), and upper bounds on the distortion. We
reach these results by means of a purely combinatorial analysis plus the standard
Grotzsch inequality.

Our main geometric result, Theorem III, is proven in §6. The above analysis does
not always yield the linear growth of moduli. In particular, it is not good enough
for the basic example called the Fibonacci map. Proof of the moduli growth for the
Fibonacci combinatorics is the heart of the whole paper (§6.4). This crucial step is
based on the Definite Grétzsch inequality, estimates of hyperbolic distances between
puzzle pieces and analysis of their shapes. The key observation is that sufficiently
pinched pieces make a definite extra contribution to the moduli growth.

In the next section, §7 we prove a priori bounds for infinitely renormalizable
quadratics of sufficiently big type (Theorems IV and IV’). The meaning of this
condition is that certain combinatorial parameters of the renormalized maps R” f
are sufficiently big. The main such a parameter is the above mentioned height,
but there are also a few others. These conditions together mean roughly that the
periods of R"f are sufficiently big, except for a possibility of long “parabolic or
Siegel cascades”.

In the last section of Part I, §8, the above discussion is specified and refined for
real maps of Epstein class. We define a notion of “essential period” and prove that
mod(Rf) is big if and only if the essential period per (f) is big. This discussion
exploits essentially Martens’ real bounds [Ma] and complex bounds of [L4].

Let us now pass to Part II. In §9 we show that the secondary limbs condition
and a priori bounds yield a definite space between the bouquets of little Julia sets.
This provides us with special disjoint neighborhoods of little Julia bouquets with
bounded geometry (called “standard”). Together with the work of Hu & Jiang
[HJ, J] and McMullen [McM3] this yields local connectivity of the big Julia set
(Theorem VI).

In the next two sections we prove the Rigidity Theorem. We start §10 with a
discussion of reductions which boil the Rigidity Theorem down to the following
problem: Two topologically equivalent maps (satisfying the assumptions of the
theorem) are Thurston equivalent. Then we set up an inductive construction of
approximations to the Thurston conjugacy. In particular, we adjust an approximate
conjugacy in such a way that it respects the standard neighborhoods of little Julia
bouquets.

The next section, §11, presents the proof of the Main Lemma. This lemma
gives a uniform bound on the pseudo-Teichmiiller distance between the generalized
renormalizations of two combinatorially equivalent quadratic-like maps (the bound
depends only on the selected secondary limbs and a priori bounds). The main
geometric ingredient which makes this work is the linear growth of the principal
moduli (Theorem III).
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In the last section, §12, we discuss rigidity and deformations of real quasi-
quadratic maps.

In Appendix A we collect necessary background material in conformal and quasi-
conformal geometry.

In Appendix B we make further reference comments.
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Part I. Combinatorics and geometry of the Yoccoz puzzle
2. DoOUADY-HUBBARD RENORMALIZATION AND YOCCOZ PUZZLE

2.1. General terminology and notations. We will use the following notations:

D, = {z:|z| < r} is the standard disk of radius », D = D is the unit disk;

T, = JD, is the standard circle of radius r, T = T, is the unit circle;

A(r,R) = {z : r < |z| < R} is a standard annulus; similar notation is used for a
closed annulus Alr, R] (or a semi-closed one).

Given two sets A and B, let dist(A, B) = inf{dist(z,(): z € A,( € B}.

Given two subsets V and W of the complex plane, we say that V is strictly
contained in W, Ve W,if 1V CintW.

By a topological disk we will mean a simply connected region in C'. By an
annulus we mean a doubly connected region. A horizontal curve in an annulus A is
a preimage of a circle centered at 0 by the Riemann mapping A — {z: 7 < |2z| < R}
(here 0 < r < R < o0).

Let us consider a family of two topological nested disks D, C D, with I'; = 9D,
and A = Dy N\ D;. The statement that mod(A) > ¢ with an € > 0 uniform over the
family will be freely expressed in the following ways: “The annulus A has a definite
modulus”, or “D; is well inside D,”, or “There is a definite space in between I';
and I's.”

Quasi-conformal and quasi-symmetric maps will be abbreviated as qc and qs
correspondingly.

By orb z we denote the forward orbit {f”z}7°; of z, and by w(z) its w-limit set.
Let also orb,z = {f™2}" _,. Let P.: 2~ 2" + c.
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2.2. Polynomials. By now there are many surveys and books on holomorphic
dynamics. The reader can consult, e.g., [Be], [CG], [L1, Mil] for general reference,
and [Br], [DH1] for the quadratic case. Below we will remind the main definitions
and facts required for discussion. However we assume that the reader is familiar
with classification of periodic points as attracting, neutral, parabolic and repelling.

Let f : C — C be amonic polynomial of degree d > 2, f(z) = 2*+a 247 +- - -+ay.
The basin of oo is the set of points escaping to oo:

Dy(s0) = D(s) = {z € C: ["z — oo}

Its complement is called the filled Julia set: K(f) = C~ D(cc). The Julia set is
the common boundary of K(f) and D(oc0): J(f) = 0K(f) = 0D(oc). The Fatou
set F'(f)is defined as C\ J(f). The Julia set (and the filled Julia set) is connected
if and only if non of the critical points escape to oo, that is, all of them belong to
K(f).

Given a polynomial f, there is a conformal map (the Béttcher function)
By :U; —=A{z:|z| >rp > 1}

of a neighborhood U; of infinity onto the exterior of a disk such that Bf(fz) =
(Bj2)* and B;(z) ~ 2z as z — oo. There is an explicit dynamical formula for this
map:

(2.1) By(z) = lim (f2)"/""

with an appropriate choice of the branch of the d"th root.

If the Julia set J(f) is disconnected then OU; contains a critical point b of f.
Otherwise B; coincides with the Riemann mapping of the whole basin of infinity
D(o00) onto {z : 2] > 1} (in this case 7y = 1).

The external rays R’ = Rff of angle # and equipotentials " = E7 of level r
are defined as the Bj-preimages of the straight rays {e"e? : r; < r < oo} and the
round circles {re’® : 0 < § < 27}. They form two orthogonal invariant foliations of
U;. Moreover, even in the disconnected case, a ray R’ can be infinitely extended
towards the Julia set, unless it “bounces off” a critical point, and the Bdttcher
function can be analytically continued along this ray (see [GM], Appendix B, for a
detailed discussion).

Let R%(r7) = Rfﬁ(p’r) stand for the arc of the external ray of angle # in between
the equipotential levels 0 < p < r < oo (with the usual meaning of notations [p, ],
[p,7) etc.). Note that if the ray lands at some point a € J(f) then R*I®") also
makes sense.

Each ray comes together with the natural parametrization by the equipotential
levels.

Theorem 2.1 (see [M1], §18, or [H]). Assume that J(f) is connected. Then
for any repelling periodic point a, there is at least one but at most finitely many
external rays landing at a.
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Thus the external rays landing at « are organized in several cycles. The rotation
number of these cycles is the same, and is called the combinatorial rotation number
p(a) of a. Let R(a) = Rs(a) denote the union of the closed external rays landing
at a, and

R(a) = Ry(a) = UHR(fa)
(where p is the period of ¢ and @ = orb a is the corresponding periodic cycle). This

configuration, with the external angles marked at the rays, is called the rays portrait
of the cycle a. The class of isotopic portraits is called the abstract rays portrait.

2.3. Quadratic family. Let now f = P.: 2z — 22 + ¢ be a quadratic polynomial.
In this case the rays portraits of periodic cycles have quite special combinatorial
properties. The reader can consult [DH1], [At], [GM], [Sc2], [M4] for the proofs of
the results quoted below.

Proposition 2.2 (see [M4]). Let a = {a;}'_, be a repelling periodic cycle such
that there are at least two rays landing at each point ay.

(i) Let Sy be the components of C\ R(a) containing the critical value c¢. Then
Sy is a sector bounded by two external rays.

(i) Let Sy be the component of C~ f~'R(a) containing the critical point 0. Then
Sy is bounded by four external rays: two of them land at a periodic point ap, and
two others land at the symmetric point —ay.

(iii) The rays of R(a) form either one or two cycles under iterates of f.

A particular situation of such kind is the following. Tet b = {b;}2Z; be an at-
tracting cycle, p > 1. Let Dy be the components of its basin of attraction containing
by. Then the boundaries of D; are Jordan curves, and the restrictions f?|0D;, are
topologically conjugate to the doubling map 2z — 2% of the unit circle. Hence there
is a unique fP-fixed point a; € dD;. Altogether these points form a repelling peri-
odic cycle @ (whose period may be smaller than p), with at least two rays landing
at each aj. The portrait R(a) will be also called the rays portrait associated to the
attracting cycle b.

A case of special interest for what follows is the fixed points portraits. There is
always a fixed point called 8 which is the landing point of the invariant ray R,.
Moreover, this is the only ray landing (3, so that this point is non-dividing: the set
K(f)~ {5} is connected.

If the second fixed point called « is also repelling, it turns out to be dividing: there
are at least two external rays landing at it, so that K( f)~{a} is disconnected. These
rays are cyclically permuted by dynamics with a certain combinatorial rotation
number ¢/p.

The Mandelbrot set M is defined as the set of ¢ € C for which J(P.) is connected,
that is, 0 does not escape to oo under iterates of P.. If c € C~ M, then J(P,) is a
Cantor set.

The Mandelbrot set itself is connected (see [DH1], [CG]). This is proven by con-
structing explicitly the Riemann mapping By : C\'M — {z : |z| > 1}. Namely, let
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D.(00) be the basin of oo of P., and B. be the Béttcher function (2.1) of P.. Then
(2.2) By (e) = B.(c).

The meaning of this formula is that the “conformal position” of a parameter ¢ €
C ~ M coincides with the “conformal position” of the critical value ¢ in the basin
D.(00). This relation is a key to the similarity between dynamical and parameter
planes.

Using the Riemann mapping By, we can define the parameter external rays and
equipotentials as the preimages of the straight rays going to oo and round circles
centered at 0. This gives us two orthogonal foliations in the complement of the
Mandelbrot set.

A quadratic polynomial P, with ¢ € M is called hyperbolic if it has an attracting
cycle. The set of hyperbolic parameter values is the union of some components
of int M called hyperbolic components. Conjecturally all components of int M are
hyperbolic. This Conjecture would follow from the ML C Conjecture asserting that
the Mandelbrot set is locally connected (Douady & Hubbard [DH1]).

The main cardioid of M is defined as the set of points ¢ for which P, has a neutral
fixed point a., that is, |P/(a.)| = 1. It encloses the main hyperbolic component
where P. has an attracting fixed point. In the exterior of the main cardioid both
fixed points are repelling.

Let H C int M be a hyperbolic component of the Mandelbrot set, and let b(c) =
{br(c)}5Z; be the corresponding attracting cycle. On the boundary of H the cycle
b becomes neutral, and there is a single point d € dH where (P}) (by) = 1 [DH1].
This point is called the root of H.

If H is not the main component then for any ¢ € H there is the rays portrait
R. associated to the corresponding attracting basin. Let #; and 8, be the external
angles of the two rays bounding the sector 5, of Proposition 2.2.

Theorem 2.3 (see [DH1], [M4], [Sc2]). The parameter rays with angles 6, and
0> land at the root d of H. There are no other rays landing at d.

The region W, in the parameter plane bounded by the above two rays and con-
taining M is called the wake of W,;. The part of the Mandelbrot set contained in the
wake together with the root d is called the limb L, of the Mandelbrot set originated
at . The root d is also referred to as the root of the wake W, or the limb L;.

Recall that for ¢ € H, a. denotes the repelling cycle associated to the basin of

the attracting cycle b.. The dynamical meaning of the wakes is reflected in the
following statement.

Proposition 2.4 (see [GM]). Under the circumstances just described, the re-
pelling cycle a. stays repelling throughout the wake Wy originated at H. The
corresponding rays portrait R(a.) preserves its isotopic type throughout this wake.

The limbs attached to the main cardioid are called primary. Let H be a hy-
perbolic component attached to the main cardioid. The limbs attached to such a
component are called secondary. More generally, if H is a hyperbolic component



10 MIKHAIL LYUBICH

obtained from the main cardioid by means of n consecutive bifurcations, then the
limbs originated at such a component will be called limbs of order n.
A truncated limb is obtained from a limb by removing a neighborhood of its root.

Figure 1. Truncated secondary limbs of the Mandelbrot set.

2.4. Douady-Hubbard polynomial-like maps. The main reference for the fol-
lowing material is [DH2]. Let U’ € U be two topological disks. A branched covering
f:U — U is called a DH polynomial-like map (we will sometimes skip “DH” in
case this does not cause confusion with “generalized” polynomial-like maps defined
below). Every polynomial with connected Julia set can be viewed as a polynomial-
like map after restricting it onto an appropriate neighborhood of the filled Julia set.
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Polynomial-like maps of degree 2 are called (DH) quadratic-like. Unless otherwise is
stated, any quadratic-like map will be normalized so that the origin 0 is its critical
point.

One can naturally define the filled Julia set of f as the set of non-escaping points:

K(f)y={z2:f"2z€eU' :n=0,1,...}.

The Julia set is defined as J(f) = 0K (f). These sets are connected if and only if
non of the critical points is escaping.

The choice of the domain U’ and the range U of a polynomial-like map is not
canonical. It can be replaced with any other pair V' € V such that f: V' — V is
a polynomial-like map with the same Julia set (compare [McM2], Thm. 5.11).

Given a polynomial-like map f: U’ — U, we can consider a fundamental annulus
A = U~ U'. It is certainly not a canonical object but rather depending on the

choice of U’ and U. Let
mod(f) = supmod A,

where A runs over all fundamental annuli of f.

Two polynomial-like maps f and ¢ are called topologically (quasi-conformally,
conformally, affinely) conjugate if there is a choice of domains f : U’ — U and
g : V' — V and a homeomorphism b : (U,U") — (V,V’) (qc map, conformal or
affine isomorphism correspondingly) such that ho f|U = go h|U.

If there is a qc conjugacy h between f and ¢ with Oh = 0 almost everywhere on
the filled Julia set K(f), then f and g are called hybrid or internally equivalent. A
hybrid class H(f) is the space of DH polynomial-like maps hybrid equivalent to f
modulo affine equivalence. According to Sullivan [S1], a hybrid class of polynomial-
like maps can be viewed as an infinitely dimensional Teichmiiller space. In contrast
with the classical Teichmiiller theory this space has a preferred point:

Straightening Theorem [DH2]. Any hybrid class H(f) of DH polynomial-like
maps with connected Julia set contains a unique (up to affine conjugacy) polynomial.

In particular, any hybrid class of quadratic-like maps with connected Julia set
contains a unique quadratic polynomial z — z? + ¢ with ¢ = ¢(f) € M. So the
hybrid classes of quadratic-like maps with connected Julia set are labeled by the
points of the Mandelbrot set. In what follows we will freely identify such a hybrid
class with its label ¢ € M.

Sullivan supplied any Teichmiiller space of quadratic-like maps (with connected
Julia set) with the following Teichmiiller metric [S1]:

disty (f,g) = inflog Dil(h),

where h runs over all hybrid conjugacies between f and g, and Dil(h) denotes the
qc dilatation of h. It is easy to see from the construction of the straightening that
the Teichmiiller distance from f to the quadratic P.sy : z — 2% 4 ¢(f) in its hybrid
class is controlled by the modulus of f:
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Proposition 2.5. If mod(f) > p > 0 then distr(f, P.;)) < C with a C = C(p)
depending only on u. Moreover, C(j) — 0 as p — oo.

This is a reason why control of the moduli of polynomial-like maps is crucial for
the renormalization theory (see [S2]).

Given a polynomial-like map with connected Julia set, we can define exzternal
rays and equipotentials near the filled Julia set by conjugating it to a polynomial
and transferring the corresponding curves. This definition is certainly not canonical
but rather depends on the choice of conjugacy. If mod(f) > ¢, then we can use a
K (€)-qc conjugacy. In what follows we always assume that the choice of the curves
is made in such a way.

2.5. Douady-Hubbard renormalization. The reverse procedure under the name
of tuning is discussed in [DH2], [D1] and [M3]. A more general point of view (but
which is equivalent to the tuning, after all) is discussed in [McM2].

Let f: U’ — U be a quadratic-like map. Let @ be a dividing repelling cycle, so
that there are at least two rays landing at each point of @. Let R = R(a) denote the
configuration of rays landing at @, and let R = —R be the symmetric configuration.
Let us also consider an arbitrary equipotential E. Let now € be the component of
C~ (FURUTR') containing the critical point 0. By Proposition 2.2, it is bounded
by four arcs v, of external rays ant two pieces of the equipotential F.

Let p be the period of the above rays, and a be the point of the cycle @ lying on
8. Let us consider a domain ' C Q, the component of f~7Q attached to a (see
Figure 2). If @’ 5 0 then f? : @ — Q is a double covering map (otherwise €’ is a
strip univalently mapped onto ).

A quadratic-like map f is called DH-renormalizable if there is a repelling cycle a
as above such that Q' 3 0, and 0 does not escape ) under iterates of ff. We will
also say that this renormalization is associated with the periodic point a. We call
[ immediately DH renormalizable if a is the dividing fixed point a of f.
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¢a

Figure 2. Renormalization domain for the Feigenbaum polynomial.

Note that the disks Q/, fQ',... ., fP~1Q’ have disjoint interiors. Indeed, otherwise
f*Q" would be inside Q for some k£ < p. But this is impossible since the external
rays which bound f*Q are outside of Q.

In the DH-renormalizable case one can extract a polynomial-like map f? : V! — V
by means of a “thickening procedure” (see [DH1] or [M2]). Namely, let us consider a
little bit bigger domain V' O  bounded by arcs of four external rays close to v;, two
arcs of circles going around the point ¢ and the symmetric point @' (i.e., fa' = a),
and two arcs of £. Pulling V' back by fF, we obtain a domain V' € V such that
the map ff : V' — V is quadratic-like. This map considered up to rescaling (that
is, up to affine conjugacy) is called the DH renormalization of f.

Let now [ : z — 224 ¢y be a quadratic polynomial, ¢, € M. If it is renormalizable
then there is a homeomorphic copy My 3 ¢ of the Mandelbrot set with the following
properties (see [DH2, D1]). For = € M}, = My ~ {one point} the polynomial
P, : z — z? 4+ ¢ is renormalizable. Moreover, there is the analytic parameter
extension a, of the periodic point @ to a neighborhood of M/ such that the above
renormalization of P, is associated to a.. At the parameter value b removed from
My the periodic point a. is becoming parabolic with multiplier one. This parameter
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value is called the root of M,. We say that the component H, of M, corresponding
to the main hyperbolic component of M “gives origin” to the copy My. Vice versa,
any hyperbolic component Hy of the Mandelbrot set gives origin to a copy of M. In
particular, the copies corresponding to the immediate renormalization are attached
to the main cardioid.

We will see below that among all renormalizations there is the first one, which we
denote Rf (see §3.4). This renormalization corresponds to a maximal copy of the
Mandelbrot set (that is a copy, which is not contained in any bigger copies except
M itself). Let M denote the family of maximal Mandelbrot copies.

It may happen that Rf is also renormalizable, so that f is “twice renormaliz-
able”. In such a way we can associate to f a canonical finite or infinite sequence

of renormalizations f, Rf, R*f,.... Accordingly f can be classified as “at most
finitely” or “infinitely renormalizable”.
Given any sequence 7 = {M,, M;,...} of maximal copies of M, there is an

infinitely renormalizable quadratic polynomial P, such that ¢(R™P,) € M,,, m =
0,1,.... Indeed, the sets

Comy(t)={b:¢(R"P,) € M,,, m=10,1,... ,N}

form a nest of copies of M whose intersection Com(7) consists of the desired pa-
rameter values.

We say that these infinitely renormalizable quadratics have combinatorics 7. The
MLC problem for infinitely renormalizable parameter values is equivalent to the
assertion that there is only one quadratic with a given combinatorics, i.e., Com(T)
is a single point for any 7 (see Schleicher [Scl] for a detailed discussion of the
combinatorial aspects of the MLC).

Let us say that f satisfies the secondary limbs condition if there is a finite family
of truncated secondary limbs L; of the Mandelbrot set such that the hybrid classes of
all renormalizations R™ f belong to UL;. Let SL stand for the class of quadratic-like
maps satisfying the secondary limbs condition.

Here are some examples of maps of class SL:

e Maps which are at most finitely renormalizable and don’t have non-repelling
periodic points (Yoccoz class).

e Infinitely renormalizable maps of bounded type (“bounded type” means that there
are only finitely many different Mandelbrot copies in the string 7 = {M,, My,... }).

e Real maps which don’t have non-repelling periodic points.

e Select a finite family of (non-truncated) limbs L; of order 3 (see §2.3). If «(R™ f) €
UL;, m=0,1,..., then f € SL. Unlike S£ assumption which involves truncation,
this property is combinatorial.

All the above combinatorial notions are readily extended to quadratic-like maps
via the straightening. A quadratic-like map f is said to have a prior: bounds if there
is an € > 0 such that mod(R™f) > € > 0 for all the renormalizations (note that
maps of the Yoccoz class satisfy this condition by logic).
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2.6. Yoccoz puzzle. Let f : U’ — U be a quadratic-like map with both fixed
points a and § repelling. As usual, a denotes the dividing fixed point with rotation
number p(a) = ¢/p, p > 1. Let F be an equipotential sufficiently close to K(f) (so
that both £ and fFE are closed curves). Let R, denote the union of external rays
landing at a. These rays cut the domain bounded by F into p closed topological
disks VZ»(O), i=0,...,p—1,called puzzle pieces of zero depth (Figure 3). The main

property of this partition is that f@YJ»(O) is outside of Uint YZ»(O).

Let us now define puzzle pieces YZ»(") of depth n as the closures of the connected
components of f~"int Yk(o). They form a finite partition of the neighborhood of
K(f) bounded by f~"FE. If the critical orbit does not land at «, then for every
depth there is a single puzzle-piece containing the critical point. It is called critical
and is labeled as Y™ = ™.

Let Y; denote the family of all puzzle pieces of f of all levels. It is Markov in the
following sense:

(i) Any two puzzle pieces are either nested or have disjoint interiors. In the former
case the puzzle piece of bigger depth is contained in the one of smaller depth.
(ii) The image of any puzzle piece YZ»(”) of depth n > 0 is a puzzle piece Yk("_l) of
the previous depth. Moreover, f : YZ»(") — Yk("_l) is a two-to-one branched covering
or a conformal isomorphism depending on whether YZ»(") is critical or not.

We say that f*[V;"™) I[-to-one covers a union of pieces Un, Yj(m) if f¥int Y™ is
[-to-one covering map onto its image, and

I na) =y na).

m,j

In this case ij(m) is obtained from fk|YZ»(") by cutting with appropriate equipoten-
tial arcs.

On depth 1 we have 2p — 1 puzzle pieces: one central Y(", p — 1 non-central Yi(l)
attached to the fixed point a (cuts of YZ»(O) by the equipotential f~'E), and p — 1
symmetric ones Z! attached to a’. Moreover, f|Y(!) two-to-one covers Yl(l), f|K(1)
univalently covers VZ(_IH, 1=1,...,p—2,and f|Vp@1 univalently covers YV U, ZZ»(l).
Thus 7Y™ truncated by f~'E is the union of Y and Z" (Figure 3).

Theorem 2.6 (Yoccoz, 1990). Assume that both fixed points of a polynomial-
like map f are repelling, and that f is DH non-renormalizable. Then the following
divergence property holds:

> mod(Y™ YD) = oo

n=0

Hence diam Y™ — 0 as n — oo.

Corollary 2.7. Under the circumstances of the above theorem the Julia set J(f)
is locally connected.
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The reader can consult [H, L3, Mi2] for a proof (or go to Theorem II of this
paper).

The Yoccoz puzzle provides us with a Markov family of puzzle pieces to play with.
Two original ways of playing this game were by means of the Branner-Hubbard
tableaux [BH] and by means of the Yoccoz 7-function (unpublished). Our way
based on the idea of generalized renormalization is quite different.

2.7. Expanding sets. Let us consider Yoccoz puzzle pieces YZ»(N) of depth N, and
let YV) denote the family of puzzle pieces Y]»(N'H) such that

YN ay™ =g k=0...,0-1.

Let KV = {z: ff2 ¢ YNk =0,1...} Recall that an invariant set K is called
expanding if there exist constants C' > 0 and p € (0,1) such that

|IDfF(2)| > Cp*, 2€ K, k=0,1,...

Lemma 2.8. For a given N, diam YVt — 0 as YVt ¢ YV and | — .
Moreover, the set KV is expanding.

Proof. Let us consider thickened puzzle pieces YZ»(N) as in Milnor [Mi2] or §2.5. Then
int(fY;"")) contains Yj(N) whenever f¥;") 5 Yj(N) (recall that the Y™ are closed).
Hence the inverse map ! : Yj(N) — YZ»(N) is contracting by a factor A < 1 in the
hyperbolic metrics of the pieces under consideration.

Let Y(N*D ¢ VZ»(N). It follows that the hyperbolic diameter of VS(N"'I) in SA/Z»(N) is
at most A, and the statement follows. [

3. PRINCIPAL NEST AND GENERALIZED RENORMALIZATION

In the rest of the paper we will assume, unless otherwise is stated, that both fixed
points of the quadratic-like maps under consideration are repelling. Up to §3.6
quadratic-like maps and renormalization are understood in the sense of Douady and

Hubbard.

3.1. Principal nest. Given a set W = cl(int W) and a point z such that f'z €
int W, let us define the pull-back of W along the orb;z as the chain of sets W, =
W, W_, 3 f"~lz,... ,W_; 3 z such that W_j, is the closure of the component of
f7%(int W) containing f'=*z. In particular if z € int W and [ > 0 is the moment of
first return of orb z back to int W we will refer to the pull-backs corresponding to
the first return of orb z to int W.

Let us consider the puzzle pieces of depth 1 as described above: Y(l),YZ»(l) and
ZM. i=1,...p—1 (Figure 3). If z € YU then f?z is either in YY) or in one of
ZZ»(l). Hence either fP*0 € YY) for all k = 0,1,..., or there is the smallest ¢ > 0 and
a v such that f%0 € Z(Y. Thus either f is immediately DH renormalizable, or the
critical point escapes through one of the non-critical pieces, attached to /.
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In the immediately renormalizable case the principal nest of puzzle pieces consists
of just single puzzle piece Y (which is not very informative). In the escaping case
we will construct the principal nest

(3.1) YO Sviovio L.

in the following way. Let V° 3 0 be the pull-back of Z(!) along the orb,,0. Further,
let us define V"*! as the pull-back of V" corresponding to the first return of the
critical point 0 back to int V™. Of course it may happen that the critical point never
returns back to int V. Then we stop, and the principal nest turns out to be finite.
This case is called combinatorially non-recurrent. If the critical point is recurrent
in the usual sense, that is w(0) 3 0, it is also combinatorially recurrent, and the
principal nest is infinite.

Let [ = I(n) be the first return time of the critical point back to int V=1, Then
the map ¢, = f' : V? — V"=! is two-to-one branched covering. Indeed, by the
Markov property of the puzzle, f*V" Nint V"=t = ) for k = 1,... .l — 1, so that
the maps f: f*V" — f*+LV"™ are univalent for those &’s.

Let us call return to level n—1 central if ¢,0 € V". In other words I(n) = I(n+1).
Let us say that a sequence n,n + 1,...,n 4+ N — 1 (with N > 1) of levels (or
corresponding puzzle pieces) of the principal nest form a (central) cascade if the
returns to all levels n,n + 1,... ,n + N — 2 are central, while the return to level
n+ N — 1is non-central (see Figure 4). In this case

gn+k|vn+lC = gn+1|V"+k, k=1,...,N.

and ¢,410 € VN1 VPN Thus all the maps ¢,41,... ,9,4n are the same
quadratic-like maps with shrinking domains of definition (see the conventions in
§2.4). We call the number N of levels in the cascade its length. Note that a cascade
of length 1 consists of a single non-central level. Let us call the cascade mazimal
if the return to level n — 1 is non-central. Clearly the whole principal nest, except
the first element Y(©, is the union of disjoint maximal cascades. The number of
such cascades is called the height x(f) of f. In other words, x(f) is the number of
different quadratic-like maps among the g,’s. (If f is immediately renormalizable
set y(f) = 0.

The annuli A" = V*~! N V" and their moduli p, = mod(A") will also be called
principal.

Remark 1. The notion of the principal nest admits some useful modifications. First,
there is a flexibility in the choice of the puzzle piece V° (compare §8). Second, one
can modify the nest after passing through a long central cascade (see §3.6). The
latter modification is useful, e.g., for study the Hausdorff dimension of Julia sets
(see Przytycki [Prz], Prado [Pral]).

Remark 2. Given a quadratic polynomial f : z — 2% + ¢, the principal nest deter-
mines a specific way to approximate ¢ by superattracting parameter values. Namely,
one should perturb ¢ in such a way that the critical point becomes fixed under g,
while the combinatorics on the preceding levels keeps unchanged see [L8]. The
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number of points in this approximating sequence is equal to the height x(f). This
resembles "internal addresses” of Lau and Schleicher [LSc] but turns out to be
different.

3.2. Initial Markov tiling. Let P, be a finite or countable family of topological
discs with disjoint interiors, and g : UP; — C be a map such that the restrictions g|P;
are branched coverings onto their images. This map is called Markov if gP; D P;
whenever int gP; Nint P; # (). Let us call it a unbranched Markov map if all the
restrictions g|P; are one-to-one onto their images.

A Markov map is called Bernoulli if there is a topological disc D such that
gP; D D D UP; for all 2. Any such a DD will be called a range of g. Similarly we can
define an unbranched Bernoulli map.

We know that f?|Y(1) two-to-one covers Y(!) and the puzzle pieces ZZ»(l) attached
to o/, If fP0 € YY) (central return) then the pull back of Y) by this map is the
critical piece Y (*+P) while each Zi(l) has two univalent pull-backs Z](»H'p) (we label
them by j in an arbitrary way) (see Figure 3).

Figure 3. Initial tiling (p = 3, ¢t = 2).

Now, fP|Y(+7) two-to-one covers all these puzzle pieces. If we again have a
central return, that is f70 € Y+2) then the pull-back will give us one critical piece
Y+2) and 4(p — 1) off-critical Z]»H'Zp).

Repeating this procedure ¢ times (where f0 € Z(1), we obtain the initial central
nest

(32) Y(l) B Y(H‘P) D...D Y(H‘(t—l)P)’
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and a family of off-critical puzzle pieces Z](»H'SP), 0 <s<t—1. Moreover

(3.3) 170 € Z(H=1p)

where f(t‘”pZ,(,H("l)p) — Z,EU.

Let us say that a set D is tiled into pieces W, rel F'(f) if the int W; are disjoint,
and DN J(f)=UW,nJ(f).

Thus we have tiled Y(®rel F(f) into the pieces Z0F 0 < s < t—1, and
Y(+0=1r)  Let us look closer at this last piece. Its image under f? two-to-one
covers all above puzzle pieces of depth 1 + (¢t — 1)p. The pull-back of Z{'+(=1r)
from (3.3) gives us exactly V° 3 0, the first puzzle piece in the principal nest (3-0).
The pull-backs of the other pieces Z](»H'(‘t_l)p) provide some off-critical pieces ZZ»(l'Hp).
Finally, we have two univalent pull-backs Q; and @, of Y(140=1r) - Altogether these
pieces tile the piece Y +=1r) yel P(f).

To understand how the critical point returns back to V° we need to tile @, U Q-
further. To this end let us iterate the unbranched Bernoulli map f?|Q; U @, with
range Q; UQ, UV U Z](H'tp). So take a point 2z € @, U Q- and consider its f?-orbit
until it escapes ), U Q5 (or iterate forever if it never escapes). It can escape through

the piece V° or through a piece Z](H'tp). In any case pull the corresponding piece

back to this point. In such a way we will obtain a tiling

Qi1 UG = U UXZ»kU UUZ]OMP) UR rel F(f),

E>0 i k>t j

where X/ denote the pull-backs of V° under f*7, Z]»H'kp denote the pull-backs of the

ZZ»(H'”’) under f*=17_ and R denote the residual set of non-escaping points.
Altogether we have constructed the initial Markov tiling:

(3.4) YOSRrR=voulJUxFu Uz rel P,

E>0 @ E>0 j

It is convenient (in order to reduce the number of iterates in what follows) to
consider a Markov map

(3.5) G:veulJxtulJz"tm ~ ¢

ki k.J

defined as follows. Observe that for any j there is an ¢ such that fs”Z](»H'sP)
univalently covers ZZ»(l). Moreover fp_iZZ»(l) univalently covers Y(®. Let us set
G|Zj1+5p = frt=9_ The image of each piece Z](H'SP) under this map univalently
covers Y. Similarly let us set G|V° = fP+P=7 5o that the image of this piece
two-to-one covers V(9. Finally G|X} = f*, so that these pieces are univalently
mapped onto V°.
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3.3. A non-degenerate annulus. Yoccoz has shown that if fis non-renormalizable
then in the nest Y(® 5 Y there is a non-degenerate annulus Y \ Y+1),
However the modulus of this annulus is not under control. We will construct a
different non-degenerate annulus whose modulus we can control.

Proposition 3.1. Let f be a quadratic-like map which is not immediately renor-
malizable. Then all the principal annuli A® = V"1 V" are non-degenerate.

Proof. Observe first that V? is strictly inside Y(%), that is, the annulus Y(® ~\ V' is
non-degenerate. Indeed, V? is the pull-back of Z{ which is strictly inside Y%, As
the iterates of 9Y(") stay outside int Y®), V? may not touch gy (",

For the same reason all other pieces Z]'fH'kp) and X} of the initial Markov tiling
(3.4) are strictly inside V() as well.

Let us consider the orbit of the critical point 0 under iterates of the map G (see
(3.5)) until it returns back to V°. It first goes through the Z-pieces of the initial
Markov tiling, then at some moment [ > 1 it lands at either V° or some X7. In the
latter case, it lands at V? at the next moment.

Since the map G' : VP U Z](H'kp) — C is Bernoulli with range Y(°), there is a
topological disc P C V°, such that G'|P two-to-one covers Y%, Clearly V' is the
pull-back of either V° or X7 by G' : P — Y(©. Since both V° and X} are strictly
inside Y9, we conclude that V! € P.

Now it is easy to see that all the annuli A” are non-degenerate as well. Indeed,
it follows that the orbit of dV! stays away from V*!. Hence V? cannot touch aV*,
for otherwise there would be a point on dV! which returns back to V1. So A? is
non-degenerate. Now we can proceed inductively. O

3.4. Renormalization and central cascades.

Proposition 3.2. A quadratic-like map is renormalizable if and only if it is either
immediately renormalizable, or the principal nest V' D V' O ... ends with an
infinite cascade of central returns. Thus the height x(f) is finite if and only if f is
etther renormalizable or combinatorially non-recurrent.

Proof. Let the principle nest ends with an infinite central cascade V™=t D V™ o ...
Then the return times stabylize, [, = l,,41 = ... = [, and ¢,|V" = g,|V", n > m.
Moreover, by Proposition 3.1, V™ @ V™!, and hence g = g, = f' : V™ — Vm~!
is a quadratic-like map. We conclude that NV* consists of all points which never
escape V™ under iterates of g, that is, NV* = K(g). Since 0 € NV*, K(g) is
connected.

Take now the non-dividing fixed point b of g. Let us show that b is dividing for the
big Julia set K(f). To this end let us consider the configuration of the full external
rays whose segments bound V”. They divide the plane into the central component
Q" containing V", and a family §” = {57}, ¢ € I” of disjoint sectors each bounded
by two external rays. Since the critical puzzle pieces V" are symmetric (with respect
to the involution z — 2’ such that fz’ = fz), the families S™ are symmetric as well.
It follows that every sector has external angle less than .
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Observe that C~ (V* U J; S7') does not intersect the big Julia set J(f). Hence
every sector ST is contained in some sector S:(f; of the next level. Moreover, since
rays are mapped to rays, g(9571") = IS5y (Warning: however ¢S”'*' does not
necessarily coincide with Sg(i) but can be the whole complex plane. This makes the
argument below somewhat involved). So we have two families of maps 7 : 7 — Z7"+!
and k : " — 7" (hopefully skipping label n in the notation of these maps will
not lead to confusion).

Let us show that these two maps commute. Indeed, by definition S? C S™*!. Let
us consider a domain D = §7" N V™. Then gD = Sy M V"~1. Since 0D contains
an arc of 057, d(¢gD) contains an arc of g(957") = 852(;)1. Hence 57, D SZ(;;, S0
that k(77) = 7(k1).

Let o =70k:2" — 1" n > m. This map commutes with 7. Let A C Z™ be a
set of r indices which are cyclically permuted by ¢ : 7 — Z™. By the commutation
property, the set 78 A C Z™*%* is cyclically permuted by o : Z7* — Zm+F as well.
Thus for i € A we have: x"(77i) = ¢"i = i. Applying 7/'"1" to this equation taking
into account the commutation law we conclude that

(3.6) KTy = U 1> 1

Let T} = S"t7 i€ A,1>0. Then T C T} C ..., and by (3.6)

(3.7) g (9T = ITI".

Let us consider the union of these sectors, T; = |J; T}. Clearly all the sectors T; and
the symmetric sectors T/ have pairwise disjoint interiors. Moreover, by (3.7), the
boundary of each 7T; is g"-invariant and consists of two external rays (limits of the
external rays which bound T}) and a piece of the Julia set .J(f).

By [DH1] these boundary rays land at some periodic points. Actually, they land
at the same point. Indeed, otherwise the piece of the Julia set J(f) contained in
the 9T; would correspond to an invariant arc of the ideal boundary T of C~\ K(f)
(T is the boundary of the unit disc uniformizing C \ K'(f)). This arc would not
coincide with the whole circle T since the boundary of T; cannot contain the whole
Julia set J(f) (as one of the symmetric sectors int 7} contains a piece of the Julia
set). But such arcs don’t exist.

Thus each T; is bounded by two ¢"-invariant rays landing at the same periodic
point.

Observe finally that the period r of this point must be equal to 1, so that it
actually coincides with the fixed point b. Indeed, by construction all the sectors T;
and the symmetric sectors T/ have pairwise disjoint interiors. If » > 1 then this
situation would contradict Proposition 2.2 (ii).

So the periodic point b is dividing for J(f). Let & C Q be the corresponding
domains constructed in §2.5. Recall that € is bounded by the rays landing at b
and & and two equipotential arcs, and ' is the connected component of (f/|Q)~!
attached to b. Then K(g) C € since the external rays landing at b and b’ don’t cut
through K(g). Since K(g) is connected, @' O K(g), and hence €' 5 0. It follows
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that g : @ — Q is a double covering. Moreover, ¢"0 € K(g) C ', n = 0,1,....
Thus f is renormalizable.

Vice versa, assume that f is renormalizable. Let Rf = f' : Q' — Q be the
corresponding double covering.

Then the fixed point a may not lie in int €', for otherwise int f’ would intersect
int . Hence o does not cut the filled Julia set K(Rf). But then the preimages
of @ don’t cut K(Rf) either. Hence given a puzzle piece YZ»("), either K(Rf) is

contained in Vi(n), or K(Rf)nint Vi(n) = (. Tn particular V™ O K(Rf). But then

f'0 € V™ for all m, so that the first return times to V™ are uniformly bounded.
Hence this nest must end up with a central cascade. [

The above discussion shows that there is a well-defined first renormalization Rf
with the biggest Julia set, and it can be constructed in the following way. If f
is immediately renormalizable, then Rf is obtained by thickening Y1) — Y(©),
Otherwise the principal nest ends up with the infinite central cascade V™=! O
Vm ... Then Rf =g, : V™ — V7L

The internal class ¢(Rf) of the first renormalization belongs to a maximal copy
M, of the Mandelbrot set.

3.5. Return maps and Koebe space. Let f be a quadratic-like map, and let
V € V¢ be a puzzle piece.

Lemma 3.3. Let z be a point whose orbit passes through int V. Let | be the first
positive moment of time for which f'z € intV. Let U 3 z be the puzzle piece
mapped onto V' by f'. Then f': U — V is either a univalent map or two-to-one
branched covering depending on whether U is off-critical or otherwise.

Proof. Tet U, = f*U, k = 0,1,...1. Since ff*z € intV for 0 < k < [, by the
Markov property of the puzzle, U, Nint V = § for those k’s. Hence f: Uy — Upyy
is univalent for k = 1,... ,/ — 1, and the conclusion follows. [

Let z € intV be a point which returns back to intV, and let [ > 0 be the
first return time. Then there is a puzzle piece V(z) C V containing z such that
f'V(z) = V. It follows that the first return map Ay f to int V is defined on the
union of disjoint open puzzle pieces int V;. Moreover, if

(3.8) movny =0, m=12,...

then it is easy to see that the closed pieces V; are pairwise disjoint and are contained
in int V. Indeed, otherwise there would be a boundary point { € 0V whose orbit
would return back to V, despite (3.8).

Somewhat loosly, we will call the map

(3.9) Avf¢UV¢—>V

the first return map to V. (Warning: it may happen that a point z € dV returns
back to V' but does not belong to UV}; it may also happen that a point z € 9V;
returns to V earlier than prescribed by the map A;.)
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Let Vi denote the critical (“central”) puzzle piece (provided the critical point
returns back to V). Now Lemma 3.3 immediately yields:

Lemma 3.4. The first return map Ay univalently maps all the off-critical pieces
V; onto V', and maps the critical piece V onto V' as a double branched covering.

Thus the first return map Ay f is Bernoulli, and is unbranched on |J,, Vi.
Let us now state an important improvement of Lemma 3.3 which will provide us
later on with a “Koebe space” and distortion control.

Lemma 3.5. Let z be a point whose orbit passes through the central domain int Vj
of the first return map (3.9), and [ > 0 be the first moment when f'z € V. Then
there is a puzzle piece Q 3 z mapped univalently by f' onto V.

Proof. Let s be the first moment when f*z € V. Then f'z = (Ay f)*(f*2) for some
k> 0. Moreover, (Av f)"(f*z) & V, for r < k.

Since the return map is unbranched Bernoulli outside of the central piece, there
is a piece X C V containing f*z which is univalently mapped by (Ay f)* onto V.
On the other hand, by Lemma 3.3 there is a domain D 3 z which is univalently
mapped by f* onto V. Hence the domain (f|D)~*X is univalently mapped by f'
onto V. O

Let us now consider the principal nest (3.1) of f. Let
(3.10) Gn UV — V!

be the first return map to V"' where V;* = V" 3 0. We will call it a principal
return map. We will also let g, = f.

Corollary 3.6. For n > 2 the pieces V;* are pairwise disjoint, and the annuli
V=t V™ are non-degenerate. Moreover, the map ¢,|V* can be decomposed as
hy, ;o f where h,; is a univalent map with range V"=7.

Proof. As V"=t € V=2 (Proposition 3.1), and
eV NtV Tt =0, m=1,2,...,

condition (3.8) is satisfied for V= V"~! and the first statement follows.

Take a piece V", and let ¢,,|V;" = f'. By Lemma 3.5 the map f'=!: fV» — V-1
can be extended to a univalent map with range V"% and the second statement
follows as well. [

Let @ : 2 — 2? be the quadratic map. Since f : U’ — U is a double covering
with the critical point at 0, it can be decomposed as ® o h where h : U’ — C is
a univalent map. Let U” = f~'U. If mod(U’ ~ U) > € > 0 then by the Koebe
Theorem, h|U" has a L(¢)-bounded distortion. Thus f is “quadratic up to bounded
distortion” . Moreover, once we know that the mod A" are bounded away from 0
(see Theorem II below), we can conclude by Corollary 3.6 that all the maps g,, are
quadratic up to bounded distortion.
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3.6. Solar system: Bernoulli scheme associated to a central cascade. In
the case of a central cascade we need a more precise analysis of the Koebe space.
Let us consider a central cascade C = C™+:

(3.11) |78 T VA e I T YA e B AL N

where ¢,,110 € V™TN=L V™Y Set g = ¢yt |V Then g : VF — Vi1 is a
double branched covering, k=m+1,...m+ N.

Let us consider the first return map gn,.1 : UVT — V™ see (3.10). Tet
us pull the pieces V;"™! back to the annuli A*¥ = V*=1 V¥ by iterates of g,
k=m+1,....,m+ N. We obtain a family W(C) = WY of pieces W}. By
construction, WF C A* and ¢g"=™~! univalently maps each W} onto some V;**' =
W,

Let us define an unbranched Bernoulli map
(3.12) G=Gpyn: | W=V

w(c)

k—m-—1

(see Figure 4).

as follows: G|VV]»k = 0ms109

Figure 4. Solar system.

Lemma 3.7. Let us consider the central cascade (3.11). Let z be a point whose
orbit passes through V™Y and [ be the first moment for which f'z € V™*tN. Then
there is a piece Q0 3 z which is univalently mapped by f' onto V™.
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Proof. Let s be the first moment for which f*2 € V™. Then f'z = G*(f*z) where
(i is the Bernoulli map (3.12). Now repeat the argument of Lemma 3.5 just using
(¢ instead of the first return map. O

Corollary 3.8. Let us consider the central cascade (3.11). Then the map ¢myny1 :
ymiN+l o YN can be represented as hy,on41 0 f where h,, 41 is a univalent
map with range V.

Proof. Repeat the proof of Corollary 3.6 using Lemma 3.7 instead of 3.5. O

Remark. The modification of the principal nest after passing a long central
cascade mentioned in Remark 1 of §3.1 is the following. Let ¢,,,10 € VV]»m"'N.
Define V"+N+1 a5 the pull-back of WY by gyr 2 VPN — ymEN=1L D Then
continue the nest by the first return pull-backs beginning with V*+N+! modifying
it each time after passing a long cascade. Note that the construction of the first
piece V? described in §3.2 is similar to this modification after passing the initial
degenerate central cascade (3.2).

3.7. Generalized polynomial-like maps and renormalization. Let {U;} be a
finite or countable family of topological discs with disjoint interiors strictly contained
in a topological disk U. We call a map g : UU; — U a (generalized ) polynomial-like
map if g : U; — U is a branched covering of finite degree which is univalent on all
but finitely many U;.

Let us say that a polynomial-like map ¢ is of finite type if its domain consists
of finitely many disks U;. In this case we define the filled Julia set K(g) as the
set of all non-escaping points, and the Julia set J(g) as its boundary. The DH
polynomial-like maps correspond to the case of a single disk Us.

Generalized Straightening Theorem. Any generalized polynomial-like map of
finite type is qc conjugate to a polynomial with the same number of non-escaping
critical points.

Proof. For the case of two discs Uy, U; the proof is given in [LM]. In general let us
proceed inductively in the number of the discs. Enclose two of the discs by a figure
eight, and make a qc surgery which creates a new escaping critical point at the
singularity of the figure eight, see [LM]. This surgery decreases by one the number
of the discs. O

Let us call a generalized polynomial-like map a generalized quadratic-like if it has
a single (and non-degenerate) critical point. In such a case we will assume, unless
otherwise is stated, that 0 is the critical point, and label the discs U/; in such a
way that Uy 2 0. In what follows we will deal exclusively with quadratic-like maps,
namely with the principal sequence g, of the first return maps (3.10).

Given a an+17 n > 1, let [ be its first return time back to V" under iterates of

gn, that is, gn |V = gl Then
gﬁ‘/jn-l—l - z?k)? k= 0717"' 717
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with i(0) = i(l) = 0. Moreover, giV; € Vg, for k < I. The sequence 0 =
i(0),4(1),...,i(l) = 0 is called the itinerary of V"*' through the domains of pre-
vious level. A piece V]»”"'1 is called precritical if gan”"'l = V', so that it has the
shortest possible itinerary: [ = 1.

Let us define the n-fold generalized renormalization T" f of f as the first return
map g, restricted to the union of puzzle pieces V;» meeting the critical set w(0),
and considered up to rescaling. In the most interesting situations these maps are of
finite type:

Lemma 3.9. If f is a DH renormalizable quadratic-like map, then all the maps
T" f are of finite type.

Proof. In the tail of the principal nest the maps T” f are DH quadratic-like, and
their domains consist just of one component. So we should take care only of the
initial piece of the cascade.

Let us take the renormalization Rf = f': V'l — V! with ¢t > n. Since 0 is
non-escaping under iterates of Rf, we have the following property: the first landing
time of any point f*0 back to V! is at most [. All the more, the landing time to
the bigger domain V" D V' is bounded by /. Hence the components of f~'V"~1,
t=20,1,...,l =1, cover the whole postcritical set. For sure, there are only finitely
many these components. But the domain of T™ f consists of the pull-backs of these
components by f|V"~l. O

3.8. Return graph. Let Z” be the family of puzzle pieces V;* intersecting w(0),

that is, the pieces in the domain of the generalized renormalization

f: vt —vrh
"

Let us consider a graded graph T; whose vertices of level n are the pieces V" € 7",
n=0,1,..., where Vjo stand for the pieces of the initial tiling (3.4). Let us take
a vertex V"t € Z"*! and let ¢(1),... ,i(t) = 0 be its itinerary through the pieces
of the previous level under the iterates of g,. Then join V]»"+1 with V;” by k edges,
provided the symbol ¢ appears in the above itinerary &k times. This means that the
piece Vj”"'1 under iterates of g, passes through V;» k times before the first return
back to V™. Let us order the edges joining two vertices Vj”"'1 and V" so that the
first edge represents the first return of Vj”"'1 to V., the second one represents the
second return, etc.

Note that for any vertex Vj”"'1 there is exactly one edge joining it to the critical
vertex V' of the previous level. Note also that by Lemma 3.9 in the DH renormal-
izable case the number of vertices on a given level is finite. In any case there are
clearly only finitely many edges leading from a Vj""'1 to the previous level n. Let
7 (V"*") denote the number of such edges, which is equal to the first return time of
Vj""'1 back to V™ under iterates of g¢,.

By a path in the graded graph T; we mean a sequence of consecutively adjacent
vertices ViT,), n = LI+ 1,...,0 4+ k up to reversing the order. So we don’t endow
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a path with orientation, and can go along it either strictly upwards or strictly
downwards.

Diverse combinatorial data can be easily read off this graph. For example, given
n > m, the number of paths joining V]»”"'1 to V. is equal to the number of times
which the g,,-orbit of V]»”"'1 passes through V™ before the first return back to V".
Hence the return time of V]»"+1 back to V™ under iterates of ¢,, is equal to the total
number of paths in T; leading from V]»"+1 up to level m. For m = 0 we obtain the
return time under iterates of the original map f = ¢o.

Assume now that the map f is DH renormalizable, and let s be a renormalization
level in the principal nest, that is, g, : V*T' — V* is a quadratic-like map with
non-escaping critical point. Then there is a single vertex V**! at level s+ 1, and
below it the return graph is just the “vertical path” through the critical vertices.
By the above discussion, the total number of paths in the graph T; joining the top
level to the bottom vertex V**! is equal to the renormalization period per(f) (i.e.,
the return time of V**! back to V¢ under iterates of f).

It follows that the per(f) is bounded if and only if the DH-level s is bounded, and
all the return times 7 (V;”*') are bounded for 1 < m < s and any i. For instance,
the “if” statement means: If s < 5 and 7(V;"*") < 7 for all vertices V;"*', then
per(f) < p(s,7). Indeed, the total number of paths in the graph is bounded by 7°.

Note that central cascades correspond to the vertical paths through the critical
vertices. We say that a path 7 passes through a central cascade (3.11) if v > V"
with n € [m+ 1,m + N].

Let us now define one more combinatorial notion, the rank (compare [L4], §3).
Let D™ C V"~! be a puzzle piece of the full Markov family Y; (see §2.6) containing
at least one piece V,” of level n. Let us consider the shortest path v leading from D"
(i.e., from one of the pieces V;> C D") down to a critical piece V"**. The number
of central cascades this v passes through will be called the rank of D™.

This notion is motivated by the following consideration. Let us consider two
adjacent puzzle pieces V;* C D" & Vj""'l, and an edge 7 joining them. Let ¢ be
the return time represented by =, i.e., gfLV]»""'1 C V*. The piece D"t' D V]»”"'1 in
V™ such that ¢! D"** = D™ will be called the pull-back of D" along the edge 7.
More generally, let us define the pull-back of D™ along a path v leading from D"
downwards by composing the pull-backs along the edges.

Lemma 3.10. Let v be the shortest path leading from D™ down to a critical piece
Vy*®, and let D"** be the pull-back of D" along this path. Then

Vn+s C Dn+s C ‘/n+s—17

and the map D" — D" is a double branched covering.

Proof. Easily follows from the definitions. O

3.9. Full principal nest. Let f be a non-immediately DH renormalizable quadratic-
like map. Then its principal nest

Y(0,0) D) V0,0 D) VO,l 3.0 VO,t(O) D) VO,t(O)-I—l ...



28 MIKHAIL LYUBICH

ends up with an infinite cascade of central returns (we call this nest “short” and label
it by two indices for the reason which will become clear in a moment). Let us select
alevel #(0) of this cascade, so that the return map Rf = go )41 : V(O — Y010
is DH quadratic-like. We will call such a level DH. (The particular choice of DH
levels in what follows will depend on the geometry).

If Rf is non-immediately renormalizable, let us cut the puzzle piece V% ®+! by
the external rays, and construct its short principal nest:

Y(I,O) D) Vl,O D) Vl,l 3.0 Vl,t(l) D) Vl,t(l)-l—l ...

If Rf is DH renormalizable, then this nest also ends up with an infinite central
cascade. Then select a DH level #(1) + 1, and pass to the next short nest.

If f is infinitely DH renormalizable but none of the renormalizations are imme-
diate, then in such a way we construct the full principal nest

Y(0,0) D) V0,0 D) VO,l 3.0 VO,t(O) D) VO,t(O)-I—l D)
(313) Y(I,O) D) Vl,O D) Vl,l 3.0 Vl,t(l) D) Vl,t(l)-l—l D)

Here Y (™9 is the first critical Yoccoz puzzle piece for the m-fold DH renormalization
R™ f, while the pieces V™" form the corresponding short principal nest. Moreover,
for m > 1, Y™ is obtained by cutting V™~ LHm=D+! with the external rays of
Rmf . Vm—l,t(m—1)+1 N Vm—l,t(m—l)‘

The annuli A™" = V™"=1 V™" will be called the principal annuli.

3.10. Big type: special families of Mandelbrot copies. Assume that we asso-
ciated to any quadratic-like map a “combinatorial parameter” 7(f), which depends
only on the hybrid class ¢(f) and is constant over any maximal copy of the Man-
delbrot set. (Keep in mind the height function x(f) or the period per(f).) Thus
we can use the notation 7(M’).

Let & C M be a family of maximal copies of the Mandelbrot set. Let us call it
T-special if it satisfies the following property: for any truncated secondary limb I
there is a 77 such that S contains all maximal copies M’ C L of the Mandelbrot set
with 7(M') > ;.

Let f be an infinitely renormalizable quadratic-like map. Let us say that it is of
S-type if all the internal classes ¢(R" f) belong to copies M’ from S.

4. INITIAL GEOMETRY

The goal of this section is to give a bound on the first principal modulus depending
only on the choice of the secondary limbs and mod( f):
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Theorem I. Let f be a quadratic-like map with internal class c( f) ranging over a
truncated secondary limb L}". If mod(f) > p > 0 then

mod(A") > C(p)v(Ly) > 0,
where C'(p) > 0 and C(p) /" 1 as p /" oc.

4.1. Geometry of rays. Let us consider a parameter region D. Assuming that

the rays R%(P7) (see §2.2) don’t bounce off the critical point for ¢ € D, let us con-

sider their natural parametrization v, : (p,7) — R%(»"). Continuous/smooth /real

analytic dependence of the ray on ¢ € D is defined as the corresponding property

of the function (¢, ¢) — 1.(¢). The same definitions are applied to equipotentials.
Let B(a,6) = {z: |z — a] < ¢}.

Lemma 4.1. (i) Assume that a ray R® and an equipotential E* don’t hit the critical
point, c € D. Then R® and Ef depend real analytically on c;

(i1) Let a. be a repelling periodic point of P, continuously depending on ¢ € D. Let
the ray R? lands at a,. Then the closure of this ray, R’, depends continuously on
c.

Proof. (i) The first statement follows from the fact that the Botcher function ana-
lytically depends on ¢, which is clear from the explicit formula (2.1).

(ii) Let us check continuity at some d € D. By (i), we only need to check that
for r > 0 sufficiently small, the arc R%[°"] is uniformly close to a4. Indeed, for any
€ > 0 there exist 6 > 0 and r > 0 such that
e l'or |c — d| < €, P. univalently maps B. = B(a,,d) onto a strictly bigger disc;

o RI"#1 C B, (this follows from (i)).

Pulling back the arc R%[">1 by P.|B,, we conclude that R%[>>1 c B,. O

Given a configuration Cy of finitely many parametrized curves and point in (', let
us consider the space QC(Cy) of all configurations qc equivalent to Co. There is a
natural Teichmiiller (pseudo-) distance on this space:

dist7(Cy,Cs) = inflog Dil(h),

where h runs over all qc equivalences h : (C,C;) — (C,Cs).

We say that configurations of a certain family have bounded geometry if they
stay bounded Teichmiiller distance from a reference configuration Cy whose curves
are smooth and intersect transversally.

Lemma 4.2. Let a., ¢ € D, be a repelling periodic as in Lemma 4.1. Lel us
consider a configuration R(a.) of finitely many rays R% landing at a., ¢ € D. Then
R(a.) has bounded geometry when ¢ ranges over any compact subset of D.

Proof. Take a d € D. For any nearby ¢ € B(d, ), let us truncate the configuration
R. with an equipotential F?, where p is selected big enough so that I? is a Jordan
curve. We obtain an inner configuration R} and an outer one, R?. The latter one has
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bounded geometry over B(d,§), as it is conformally equivalent to the configuration
consisting of the circle of radius p and raidial rays of angles ;.

Take a small € > 0. Lemma 4.1 implies that for ¢ € B(d,6) with a small ¢, there
exists a smooth parametrized Jordan curve v C B(a.,€) = B, enclosing a. which
transversally intersects every ray of R, at a single point. Tt truncates R} into the
inner configuration R’ and the outer one, R?. The latter one has bounded geometry
over B(d,¢) since by Lemma 4.1 it smoothly depends on .

Let us consider Ri. The parametrized curves y_ny = (f|B.)""v also intersect
every ray of R. at a single point. Moreover, for sufficiently big N (locally uniform),
~v_n lies strictly inside v with a definite space in between.

Let us consider a configuration C. consisting of the annulus bounded by v and
v_n with the arcs of the rays R? in between (with the natural parametrization).
Since this configuration smoothly depends on ¢ (by Lemma 4.1), it has bounded
geometry near d. Thus C. stays bounded Teichmiiller distance from a standard
configuration Cy, the round annulus A(1/2,1) with p equally spaced radial intervals
inside.

So for ¢ near d, there is a K-qc map h : C. — C, with locally uniform dilatation
K, which conjugates f to z — 2z on the inner boundaries of the configurations.
Pulling this map back by the dynamics, we obtain a K-qc equivalence between the
configuration R and a standard configuration Z consisting of the unit circle and p
equally spaced radial intervals eminating from 0.

Since the dilatation K is locally uniform, it is uniform over any compact set. [

Let the a-fixed point of f has rotation number ¢/p. Then there is a single
periodic point v € int Y of period p. Let C(f) stand for the configuration of the
rays landing at a, v and the symmetric points o', 7'.

Corollary 4.3. The configuration C(P.) has a bounded geometry while ¢ ranges
over a truncated secondary limb LI".

4.2. Fundamental domain near the fixed point. The goal of this subsection is
to construct a combinatorially defined fundamental domain with bounded geometry
near the fixed point a. It is where the secondary limbs condition comes into the
scene.

Let v and 4’ be the periodic and co-periodic points defined prior to Corollary 4.3.
Consider the family R(v') of rays landing at 4. Let D = D; be the component of
Y\ R(y') attached to the fixed point a (see Figure 5). Then f7 univalently maps
D onto a domain containing the component of Y% \ R(7v) attached to a. Note
that 9D NI(f? D) is contained in the union of two rays landing at a.

Hence there is a univalent branch of f=? which fixes @ and maps D inside itself.
It is now easy to see that f=P" ) shrink to a as n — oc. So we can select () = Q) =
D~ f7P D as a fundamental domain for f? near a: any trajectory which starts near
a must pass through ¢ = ;. Now Corollary 4.3 yields:

Lemma 4.4. Geometry of the fundamental domain Q) is bounded if ¢(f) ranges
over a truncated secondary limb and f has a definite modulus.
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Figure 5. The fundamental domain near «.

4.3. Modulus of the first annulus.

Lemma 4.5. Let P, be a quadratic polynomial with ¢ outside the main cardioid
but not timmediately renormalizable. If ¢ ranges over a truncated secondary limb
LI, then all the pieces W of the initial Markov tiling (3.4) are well inside Y (*:
mod(Y "\ W) > v(Li") > 0.

Proof. Let Y he bounded by the equipotential £ = E* of level 1 (together with
two rays). Let U” D J(f) be the domain bounded by the equipotential E”.

Take a little ¢ > 0. Then there exist N and é > 0 such that the distance from
UV B(a,e) to 9Y) is at least § (for all ¢ € LI7).

The statement is obviously true for all the pieces W of depth < N.

Any other piece W is contained in U7/2", Hence if dist(W, a) > ¢ then dist(W, Y () >
6. As diam W is uniformly bounded, we conclude that W is well inside Y(%),

Assume now that dist(W,a) < €. Then W intersects the domain D = D;. Since
ODNOW = 0, W C D. Let us consider the iterates fP*W, k& = 0,1,... until
the last moment / such that fP'W C D. At this moment fP'WW must intersect the
fundamental domain ). Since their boundaries don’t intersect, we conclude that
W C Q.

Let us consider domain Q* = Q N UY? C @ obtained by truncating @ with
the equipotential f~?F = E'/?". This domain has a bounded geometry since the
fundamental domain @ does (Lemma 4.4). Hence Q* is well inside f*D. Moreover,
JP'W C @Q* since all the puzzle pieces of (3.4) which belong to D are enclosed by
the equipotential f=7F (see Figure 5). Hence fr'W is well inside f7D as well.

We conclude that there is always a definite space around fP'W in f?D. Pulling
this space back by iterates of the univalent branch f=7 : f’D — D, we obtain a
definite space around W in D. O
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We are now ready to prove the theorem stated in the beginning of this section:
Proof of Theorem I. Assume first that f = P, is a polynomial. Let us go through
the proof of Proposition 3.1. We found an [/ and a puzzle piece P C V° such that
G'P two-to-one covers Y (9 where (7 is the Markov map (3.5). Moreover, G'0 € W
where W = V® or W = X?. Then V! is the pull-back of W by G'|P. But by
Lemma 4.5 W is well inside V(). Hence V"' is well inside V°.

If f is quadratic-like then its straightening yields the desired estimate by Propo-
sition 2.5. The constant C'(p) can certainly be selected so that it is monotone in f.
O

5. BOUNDS ON THE MODULI AND DISTORTION

In this section we introduce the asymmetric moduli and prove that they don’t
decrease under the generalized renormalization. This yields a priori bounds on the
principal moduli and distortion. The precise formulation (Theorem II) is given at
the end of the section. Note that already this result yields the Yoccoz divergence
property (Theorem 2.6).

5.1. First estimates. Let V" C ), stand for the family of all pieces V;* of level
n.

Let us start with a lemma which partly explains the importance of the principal
nest: the principal moduli control the distortion of the first return maps (see the
Appendix for the definition of distortion). Let us consider the decomposition:

(51) gn”/n = hnof7
where h,, is a diffeomorphism of fV"™ onto V"~1L,

Lemma 5.1. Let D € Y; be a puzzle piece such that f'D = V™, while f*fDNV™ =
0, k=0,...,0—1. If u, > fa then the distortion of f' on D is O(exp(—fin,_1)) with
a constant depending only on fi. Hence the distortion of h, is O(exp(—in_2)).

Proof. This follows from Lemma 3.5, Corollary 3.6 and the Koebe Theorem. O

Let us fix a level n > 0, denote V"= = A, V, =V, g =g,, A= A" = AV,
1= ft,, and mark the objects of the next level n4+1 with prime. Thus A’ =V = V4,
and ¢’ : UV — A’. (We restore the index n whenever we need it).

Lemma 5.2. Let D' C A be a puzzle piece such that ¢*D' C Vi, k = 1,...,1,
with i(k) # 0 for 0 < k <l. Then

1.
mod(A’'\ D) > 3 l;mod(A N Vi)
Proof. Let us consider the following nest of topological disks:

A=W, D...O0W, D Wi, DD,
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where Wi, is defined inductively as the pullback of V) under g W, — A,
k=1,...1. Since deg(g* : Wy, — A) =2,

1 )
mod(Wy \ Wiyy) = ) mod(A N Vi), (1 <k

But by the Grotzsch inequality

!
mod(A’ . D') > Zmod(Wk N Wegt),

k=1

and the desired estimate follows. O

Corollary 5.3. Given a puzzle piece V, we have
d A/ ! 1
mod(A" N V/) > SH
Moreover, if the return to level n is non-central, that is g0 € V; with an i # 0, then

mod(A" N\ V) > =(p + mod(A N\ V;)).

N | —

So, a definite principal modulus on some level produces a definite space around
all the puzzle pieces of the next level.

5.3. Isles and asymmetric moduli. Let {V;};cz C V" be a finite family of
disjoint puzzle pieces consisting of at least two pieces (that is |Z| > 2) and containing
a critical puzzle piece V. Let us call such a family admissible. We will freely identify
the label set Z with the family itself.

Given a puzzle piece D, let Z|D denote the family of puzzle pieces of Z contained

in D. Let D be a puzzle piece containing at least two pieces of family Z. For V; C D
let

Ri=R(IID)Cc D~ |V

JEZ|D

be an annulus of maximal modulus enclosing V; but not enclosing other pieces of
the family Z. Such an annulus exists by the Montel Theorem (see Figure 6). We
will briefly call it the maximal annulus enclosing V; in D (rel the family 7).
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Figure 6. Annulus R,.

Let us define the asymmetric modulus of the family 7 in D as

1
o(Z|D) =" 7=, mod R,(Z|D),
ez

where ¢;; is the Kronecker symbol. So the critical modulus is supplied with weight
1, while the off-critical moduli are supplied with weights 1/2 (if D is off-critical then
all the weights are actually 1/2).

For D = V"1 let 0,(Z) = o(Z|V"™!). The asymmetric modulus of level n is
defined as follows:

op = mIin on(T),

where Z runs over all admissible subfamilies of V".

The principal moduli u, and the asymmetric moduli o, are the main geometric
parameters of the renormalized maps ¢,. Again, in what follows the label n will be
suppressed as long as the level is not changed.

Let {V/}iezr be an admissible subfamily of V. Let us organize the pieces of this
family in isles in the following way. A puzzle piece D' C A’ is called an island (for
family I') if
e )’ contains at least two puzzle pieces of family 7';

e There is a t > 1 such that ¢*D’ C Vi), k = 1,...¢t — 1, with i(k) # 0, while
g'D=A.

Given an island D', let ¢p. = ¢g' : D’ — A. This map is either a double covering
or a biholomorphic isomorphism depending on whether D’ is critical or not. In the
former case, D" D Vj (for otherwise D’ C V contradicting the first part of the
definition of isles).

We call a puzzle piece V! C D’ ¢p:-precritical if ¢p/(V/) = V. There are at most
two precritical pieces in any D’. If there are actually two of them, then they are
off-critical and symmetric with respect to the critical point 0. In this case D’ must
also contain the critical puzzle piece Vj.
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Let D' = D(Z’) be the family of isles associated with Z’. Let us consider the
asymmetric moduli o(Z’'|D’) as a function on this family. This function is clearly
monotone:

(5.2) o(T'|D") > o(T'|D})) it D'> D,

and superadditive:
o(Z'|D") z o(Z'| D7) + o(Z'| Dy),

provided D} are disjoint subisles in D’.
Let us call an island D’ innermost if it does not contain any other isles of the
family D(Z'). As this family is finite, innermost isles exist.

5.2. Non-decreasing of the moduli.

Lemma 5.4. Let1' be an admissible family of puzzle pieces. Let D' be an innermost
island associated to the family 7', and let J' = 1'|D. For j € J', let us define i(j)
by the property ¢p,(V}') C Vigy, and let T = {i(j) : j € J'} U{0}. Then {Vi}ier is

an admissible family of puzzle pieces, and

1
(5.3) o(Z'|D") > 3 ((|j'| —s)u+smod Ry + Y. mod Ri(j)) ,
JET!,i(§)#0

where s = #{j : i(j) = 0} is the number of ¢p:-precritical pieces, and R; are the
mazimal annuli enclosing V; in A rel 1.

Proof. Let ¢ = ¢p/. Let us show first that the family 7 is admissible. This family
is finite since J' C Z' is finite. The critical puzzle piece belongs to Z by definition.
So the only property to check is that |Z| > 2. But otherwise J’ would consist of
two precritical puzzle pieces. But then D’ would be critical, and thus should have
also contained the critical piece Vy, which is a contradiction.

Let us observe next that

(5.4) mod(Vigy ~ ¢V/) > p if i(j) #0.

Indeed, in this case g™(¢V)/) = V; for some m > 0. Let W C Vj(;) be the pull-back
of A under g™. Then the annulus W \ ¢V} is univalently mapped by g™ onto the
annulus A ~\ Vy. Hence mod(W \ ¢V)) = mod(A \ Vi) = p, and (5.4) follows.

Given an ¢ € [, let us consider a topological disk @; = R, UV; C A (“filled
annulus R;”). By the Grétzsch inequality and (5.4),

(5.5) mod(Qi¢jy \ ¢V;) > mod Ryjy + (1 — boigs) )it

For a j € J’, let us consider an annulus Bj C D', the component of ¢~' Ry
enclosing V. This annulus does not enclose any other pieces Vi € J', k # j.
Indeed, otherwise the inner component of C \ B} would be an island contained in
D', despite the assumption that D’ is innermost.
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Let us now consider a topological disk P/ obtained by filling the annulus B;.
Then

(5.6) mod R} > mOd(Pj/ N V}/),

where R; C D' is the maximal annulus enclosing V} rel J'. Moreover ¢ : P/ — Q)
is univalent or double covering depending on whether j # 0 or j = 0. Hence

! ! 1
(5.7) mod(P]» ~ V]) > S mod(Qigy N\ ¢V;).
Inequalities (5.5)-(5.7) yield

1
(58) mod R; Z %(mod Rz(]) + (1 - 6071(])),@
Summing up estimates (5.8) over J’ with weights 1/2'~%" we obtain the desired
inequality. O

Corollary 5.5. For any island D’ of the family D’ the following estimates hold:
1
o(Z'|D") > SH and o(Z'|D") > o(I) > o.

Proof. By monotonicity (5.2), it is enough to check the case of an innermost
island D’. Let us use the notations of the previous lemma. Since the family 7 is
admissible, it contains an off-critical piece. Hence |J’| is always strictly greater
than the number s of precritical pieces in D', and (5.3) implies the first of the above
inequality.

Furthermore, as g1 > mod(Rg) and |J'| > 2, the right-hand side in (5.3) is
bounded from below by

1
2 7’| mod(Re)+ > mod(R;)| > o(Z).
i€T,i#0
(Note that ¢(Z) makes sense since Z is admissible). Finally o(Z) > o, and the
second inequality follows. O

Let us fix a “big” integer quantifier N, > 0. We say that a level n is in the “tail
of a cascade” if all levels n — 1,n — N, belong to a cascade (note that level n — 1
itself may be non-central). Cascades of length at least N, we call “long”.

Theorem 11. Given a generalized quadratic-like map ¢y, we have the following
bounds of the geometric parameters within its principal nest:

o The asymmetric moduli o, grow monotonically and hence stay away from 0 on
all levels: o, > @ > 0.

e The principal moduli p,, stay away from 0 (that is, p, > i > 0) everywhere except
for the case when n — 1 is in the tail of a long cascade (the bound i depends on the
choice of N, ).
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o The off-critical puzzle pieces V* are well inside V"' (that is, mod(V"" 1V >
g > 0) except for the case when V;* is precritical and n — 2 is the last level of a long
cascade.

o The distortion of h, from (5.1) is uniformly bounded on all levels by a constant
K.

All the bounds depend only on the first principal modulus p, and (as fi is concerned)
on the choice of N,.

Proof. The first assertion follows from the second inequality of Corollary 5.5. To-
gether with Corollary 5.3 it implies the second one (note that the second inequality
of this corollary implies that p/ > ¢/2 in the non-central case). One more applica-
tion of Corollary 5.3 yields the next assertion.

Let us check the last statement. If n — 2 is not in the tail of a central cascade,
then p,_; > &t by the second statement, and the desired follows from Lemma 5.1.

Let n — 2 be in the tail of a central cascade V™ O ... D> V"=2 5 .... If this is not
the last level of this cascade then g,|V" = ¢,,42|V", so that h, is just a restriction
of the map h,,,» with bounded distortion.

Finally, if n — 2 is the last level of a central cascade, then by Corollary 3.8 h,, can
be extended to a univalent map with range V™, and the Koebe Theorem implies
the distortion bound. O

Theorems I and II imply:

Corollary 5.6. Let f be a renormalizable quadratic-like map whose internal class
c( f) belongs to a truncated secondary limb L. Then

mod(Rf) > vr(mod(f)) > 0.

Remark. Though we believe that Theorem Il is still true for higher degree complex
unimodal polynomials z — 2¢ + ¢, ¢ € C, the above argument does not work.
However, it is worthwhile to notice that the following estimate is still valid: g, z)42 >
&(fn(k-1)42), where n(k) is the subsequence of non-central levels and ¢ > 0 is a
function depending only on d (which can be easily written down explicitly). In
particular, in the renormalizable case,

mod(Rf) > v(mod(f),x(f)) > 0,

where the function v depends on d and the choice of truncated secondary limbs.

6. LINEAR GROWTH OF THE MODULI
In this section we will prove the central result of the paper:

Theorem III. Let n(k) counts the non-central levels in the principal nest {V"}.
Then
mod A”*)+? > Bk,

where the constant B depends only on the first modulus u; = mod A!.
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6.1. Proof of Theorem III. This proof will occupy the rest of this section. Our
goal is to prove that ¢’ > ¢ + a with a definite ¢ > 0 (that is, dependent only on
mod Ag) at least on every other level, except for the tails of long cascades and a
couple of the following levels. (Theorem II shows the reason why these tails play
a special role: In the tails the principal moduli become tiny which slows down the
growth rate of asymmetric moduli.)

Clearly it is enough to show that for any innermost island D’

(6.1) o(Z'|D')> o+ a
with a definite @ > 0. The analysis will be split into a tree of cases.
6.2. Let D' contain at least three puzzle pieces.

Proposition 6.1. If an innermost island D' contains at least three puzzle pieces

Vi, j€J', then
1
o(J'|D") > oI + 5.

Proof. Let us split off (1/2)p in (5.3) and estimate all other p’s by mod(Ry). This
estimates the right-hand side by
1 |71

gttt

mod(Ro)-I-% Y mod(Ry),

i€T,i#0
which immediately yields what is claimed. O

Hence under the circumstances of Proposition 6.1 we observe a definite growth
of the asymmetric modulus provided level n — 1 is not in the tail of a long cascade.
Indeed then by Theorem II u is bounded away from 0, and (6.1) follows.

6.3. Let D’ contain two puzzle pieces. The further analysis needs some prepa-
ration in the geometric function theory summarized in Appendix A.

Assume the island D’ contains two puzzle pieces V/, j € J'. TLet ¢ = ¢ps and
let V; C V; with ¢ = i(j). Fix a quantifier L. > 0. When we say that something is
“big”, this means that it is at least C'(L.) where C'(L,) — oo as L, — oco. Similarly
“small” means an upper bound by €(L,) — 0 as L, — oco. The sign ~ will mean
an equality up to a small (in the above sense) error, while the sign > will mean the
inequality up to a small error.

Case (i). Assume that there is a non-critical puzzle piece Vii;y whose Poincaré
distance in A from the critical point is less than L,. Then by Lemma A.1

(6.2) p > mod(Ry) + o

with a definite @ = a(L,) > 0. But observe that when we passed from Lemma 5.4
to Corollary 5.5 we estimated p by mod(Ry). Using the better estimate (6.2), we
obtain a definite increase of o.

Case (ii). Assume now that the hyperbolic distance in A from any non-critical
puzzle piece Vigy to the critical point is at least L,. Assume also that levels k €
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[n — 3,n] do not belong to the tail of a long cascade (for the sake of linear growth it
is enough to prove definite growth on such levels). Then Vj may not belong to any
non-trivial island together with some off-critical piece Vj(;). Indeed, by Theorem II
all puzzle pieces of level n — 1 are well inside V"=2. But then by Lemma 5.2 all
non-trivial isles of level n are well inside of V"' = A. (The quantifier 7, should
be chosen bigger than the a priori bound on the hyperbolic diameters of the isles).

Subcase (ii-a). Assume that both Vi) are non-critical. Then by Corollary 5.5
o(J'|D') is estimated by 0,(Z) where the family 7 consists of three puzzle pieces:
two pieces Vi(;) and the central puzzle piece V;.

If the puzzle pieces Vi), 7 € J’, don’t belong to the same non-trivial island,
then by Proposition 6.1 o(Z) > 0,_; + a with a definite @ > 0, and we are done.

Otherwise the puzzle pieces Vj;) belong to an island W. Since by Lemma 5.2
W is well inside of A, it stays on the big Poincaré distance from the critical point
(namely, on distance L, — O(1)). Hence mod(Ry) ~ p, and

o(Z) > o(Z|W) 4+ mod(Ry) > 0,1 + 1,

where u = u, is bounded away from 0, since level n — 1 is not in the tail of a long
cascade. So we have gained some extra growth, and can pass to the next case.

Below we will restore labels n and n + 1 since many levels will be involved in the
consideration.

Subcase (ii-b). Let one of the puzzle pieces Viij) be critical. So we have the
family Z" of two puzzle pieces V' and V". Remember that we also assume that
the hyperbolic distance between these pieces is at least L.. Hence, V"~! is the
only island containing both of them, so that g,_1 V" and g,_1 V" belong to different
puzzle pieces of level n — 1. For the same reason we can assume that one of these
puzzle pieces is critical. Denote them by V"~ and V"™, Thus one of the following
two possibilities on level n — 2 can occur:

1) Fibonacei return when g,V C V"' and g, V" = VJ"~! (see Figure 7);

2) Central return when g, V' = Vit and gn_1V]" C vt
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9 n-1

Q ‘ v (rescaled)

Figure 7. Fibonacci scheme.

We can assume that one of these schemes occur on several previous levels n—3, n—
4, ... as well (otherwise we gain an extra growth by the previous considerations). To
fix the idea, let us first consider the following particular case, which plays the key
role for the whole theorem.

6.4. Fibonacci cascades. Assume that on both levels n—2 and n—3 the Fibonacci
returns occur. Let us look more carefully at the estimates of Lemma 5.4. In the
Fibonacci case we just have:

(6.3) mod(R}) > mod(R;™1),

1
(6.4) mod(Ry) > 3 mod(Q7™" N g1 Vy),
where Q7 = V;” U R}. Applying ¢,_» we see that
mod(Q7 ' N g1 V') > mod(Qp 2 N V).

But since V;*~? is hyperbolically far away from the critical point (the assumption
of Case (ii) is still effective),

mod(Qh N V™) & mod(V] 2 V).
By the Grotzsch Inequality there is an a > 0 such that
(6.5) mod(V' > N V™) = pemy + pas + a.

Clearly
fn_1 > mod(RE™H).
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Furthermore, let P'~" C V"~2 be the pull-back of Q> by ¢,_». Since dP]~" is
hyperbolically far away from V,"~', we have:

(6.6)
e 2 mod(R§™) = mod(P ™\ V™) & mod(V7 N Vi) 2 mod(Ry ).

Combining estimates (6.4) through (6.6) we get
1
(6.7) mod(Ry) >~ §(mod(R8_1) +mod(R}™) + a).

We see from (6.3) and (6.7) that we need to check that the constant « in (6.5) is
definitely positive. Assume that this is not the case, that is, for any é > 0 we can
find a level » in the Fibonacci cascade as above such that a < 6. Set I',, = 9V".
Then by the Definite Grotzsch Inequality (see Appendix A), the width(I',,_») in the
annulus 7= V* =2\ V"~ is at most £(8) with £(6) — 0 as § — 0. Since I',_5 is well
inside of T, we conclude by the Koebe Distortion Theorem that I',,_5 is contained
in a narrow neighborhood of a curve v with a bounded geometry. Hence there is
ak =Fk6) — 0asd — 0and € = €(6,k) > 0 such that the curve I',_5 is not
(k. €)-pinched.

On the other hand, the hyperbolic distance from the puzzle piece V*~! to the
critical point 0 in V=% is at least L,. Hence by Lemma A.4 it must be located
in the Euclidean sense very close to I',,_» relative to the Fuclidean distance to the
critical point (that is, the relative distance is at most §(6) — 0 as ¢ — 0). Hence
the critical value g,_10 is also very close to I',,_5 relative to the distance to the
critical point, that is

dist(g,0,1,_5)

< e(L.),
dist(gn0,0) = )

where ¢(L,) — 0 as L, — oc.

By the last statement of Theorem II, ¢,_; is a quadratic map up to a bounded
distortion. Hence the curve I',,_; which is the pull-back of I',,_5 by ¢,,_; must have
a huge eccentricity around the critical point. But then by Lemma A.2 the width of
[,_1in V*"=2 V" is also big, which by the above considerations gives a definite
linear growth on the next level.
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Figure 8. Fibonacci puzzle piece (below) vs the Julia set of z — 2% — 1 (above).

Remark. The actual shape of a deep level puzzle piece for the Fibonacci cascade is
shown on Figure 8. There is a good reason why it resembles the filled Julia set for
2 22— 1 (see [L5]). As the geodesic in V™' joining the puzzle pieces V* and V}*
goes through the pinched region, the Poincaré distance between these puzzle pieces
is, in fact, big.

It is time now to look closer at central cascades.

6.5. Central cascades. Let N > 2, n=m + N, and let us consider a nest C™*+¥
of puzzle pieces

(6.8) Vm o ymtl o o YymANSL o pmdN o pmtN

satisfying the following properties (see Figure 9):
e The return on level m — 1 is non-central: ¢,,0 ¢ VJ";

e Central returns occur on levels m,m +1,...m + N — 2, that is ¢,,4,0 € V7"V~
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o D"V s an island with a family Z7+V*! of two puzzle pieces inside, V"N +!

and V"V Let ¢ = ¢pyn = dpminv denote the corresponding double covering

Dm+N . Vm+N—1;

e One of the puzzle pieces ¢ppn Vi" TV, 6o,y VTV s critical.

We would like to analyze when

(6.9) o(ZmHNHD™INY > 60+ a

with a definite @ > 0. To this end we need to pass from level m + N all way up to
level m.

Let V*+N+1 ¢ D™+N he a non-precritical piece of the family Z™T¥+! and

<b‘/*m+N+1 C V1m+N C I/Vim-I—N

for some ¢ # 0. Then the return map ¢, nq1 : V;"PVH — VY can be decom-

posed as G' o ¢ for an appropriate [ > 1, where G : UWF — V™ is the Bernoulli
map (3.12) associated with the central cascade. Since ¢ has range V™,

(6.10) mod (WY < gV > mod (V7 V),

Let I'* = 9V*, and

wy, = width(DF|VF=E V),
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Vm+1

Vm+N

Figure 9. Central cascade

(with Fibonacci returns on the top and the bottom).

For k € [m 4+ 1,m + N] let V¥ denote the puzzle piece of level &k containing
g;’;ifv—%v;mwﬂ and Z* denote the family of two puzzle pieces: V¥ and V.
Moreover, let R C V*~! denote an annulus of maximal modulus going around V;
but not going around the other piece of family Z*, i = 0, 1.
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By the Definite Grotzsch Inequality and the second part of Theorem II, there is
an a = a(Wy,41) such that

m+N

(6.11) mod(V" \ V™) > 3" mod A* +a =
k=m+1
= 1 m+1 1 m+1
: Q—kmod(A )—I—aZ(Q—F)modRO + a.
:0

Let S7™Y and ST denote the pull-backs of the annuli BT and R7"™' by the
map gﬁ;% s VAN-L Y™ Then

(6.12) mod SN > mod Ry and  mod S7"TN > mod R

2N—1

Note that the inner boundary of STV coincides with the outer boundary of
W oV N+ Let Q7Y denote the union of these two annuli. This annulus
goes around ¢V,”*N*' but not around Vy"*". Now estimates (6.10), (6.11), (6.12)
yield

mod SS”"'N + mod QT"’N > 2mod RS”‘H + mod RT‘H +a> QU(I’”‘H) + a.

Finally, pulling S7"™ and Q7™ back by ¢ = ¢,,4n to the island D™+N we obtain:

1
(T(Im+N+1|Dm+N) > §(m0d SS”"’N + mod QT"’N) > (T(Im+1) + a/2.
So we come up with the following statement:

Statement 6.2. There is an increasing function ¢ : Ry — Ry, a(0) = 0, such
that for the cascade C™*V estimate (6.9) holds with a = a(wy,y,), where Wy, =
width(Im+H V™  Vmt?),

Let us fix a quantifier w, which distinguishes “small width” w from a “definite”
one. For further analysis let us go several levels up. Let m — 1 — [ be the highest
non-central level preceding m — 1,/ > 1. We are going to study when

(6.13) o(I™NH D™ NY > 6, i+ a

with a definite @ > 0. We cannot now assume that [ is bounded, so we face a
possibility of a long cascade C™~1: V™= 5 ... D V™=l Set g = ¢,u_141; then
g0 e V=i,

& Assume first that m — 2 is not the last level of a long cascade (in particular,
this is the case when central return occurs on level m — 2, that is, [ > 2). Then by
the third part of Theorem II all non-central pieces of level m are well inside V™!

mod(V”~ P\ V™) > i, j#0

. Hence g, V." ™! and g,,, V/"™ belong to different pieces of level m. Indeed, otherwise
the hyperbolic distance between V"' and V/"*! in V™ would be bounded by a
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constant L(g). But according to our assumption this distance is at least L.. So
this situation is impossible if L, was a priori selected bigger than L(f).

For the same reason the pieces g* 0 ¢,,V;"™', i = 0,1, also belong to different
pieces ij_k for 0 < k£ <[ — 3. Indeed, assume they belong to the same piece
ij_k. Clearly this piece is non-central, that is j # 0. Then it is contained in
a piece VVJ»’”_’“ of the Bernoulli family W(C™~') associated to the central cascade
C™~1. Hence ¢, Vy"t and ¢,, V"' belong to W™, the pull-back of VVJ»’”_’“ by ¢*.
As mod(W™ \ gm V") > i, the hyperbolic distance between V7! and V1! in
V™ is at most L(ji) contradicting our assumptions.

Let us show now that (6.13) holds if both g, V;*' are non-central. Indeed let
us then consider the family Z™ of three pieces: two pieces of level m containing
gm V"t and the central piece V™. Let Z™~* denote the family of puzzle pieces of
level m — k containing the pieces of ¢g*Z™. By the previous two paragraphs, 2™ *
consists of three puzzle pieces. Then by Corollary 5.5 and Proposition 6.1,

o(T™) > o(T7) > ... > o(T"47) > o(T"H1) + %ﬂ,
and we are done.

Thus let us assume that the Fibonacci return occurs on level m — 1. In this
case let Z™~* denote the family of two puzzle pieces VJ"™* and V/"~* containing
g¥og, VMt i =1,2, k<Il—1.

Note that in order to have (6.13) it is enough to have a definite increase of the
o(Z™=*%) in the beginning of the cascade C™~!. By Statement 6.2 applied to this
cascade this is the case if width(T™= V™=t V™=+2) > 4, So assume that the
opposite inequality holds. Similarly, we can assume that the hyperbolic distance
from V"2 to 0 in V™~*1 is at least L, (for otherwise we are fine: see Case (i)
above).

It follows from Lemma A.4 from Appendix A that the piece V| stays Eu-
clidean distance at most ¢ diam "=+ from T~ '+ where ¢ = €;(w., L.) — 0 as
w, — 0, L. — oo (for a fixed i1 > 0). Hence the Euclidean distance from V;"~"*? to
I'~!*+1 s relatively small as compared with its distance to I'*~! and I'*~'*2, More
precisely, there is a § = §,(w,, L.) with the same properties as € above such that

for any z € V"7,

m—I+2

(6.14) dist(z, T~ < § dist(z, (V"I Vmit2)

Take z, € V7', and let r = dist(zy,d(V™™' . V™=*2). Note that the disk
B(z,7) can be univalently pulled by ¢'~3 to the annulus V™=3 \ V™~1. By the
Koebe Distortion Theorem and (6.14), for any ¢ € V"2

dist(¢,T77%) < Cédist(, (V™2 N V7)) < €6 dist(¢,0)
with an absolute constant C'. All the more,

dist(¢,T77%) < C'§ diam V2
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so that I'™~2 has a big eccentricity about V;”~? (that is, this eccentricity is at least
e(w,, L), where e(w., L.) — oo as w, — 0, L, — 00).

Pulling I'"~2 back by ¢,m410¢m0¢m_1, we conclude that I'"*! has a big eccentricity
about 0. Hence it has big width in the annulus V™~ V™*2 and Statement 6.2 yields
the desired.

Let us summarize the information which will be useful in what follows:

Statement 6.3. If the width w,,_;,1 is at most w, and the Poincaré distance from
V=2 to 0 in V™1 s at least L,, then the eccentricity I'™ about the origin is
at least e(w., L, ), where e(w,, L,) — 00 as w, — 0 and L, — oc.

& Let us assume now that m — 2 is the last level of a long cascade C™~?:
ym=2tto V™2 ¢ > N,.
Then non-central return occurs on level m — 2. We will show that
(6.15) o(ZmNH DN > 6 s ta

with a definite @ > 0.

Let D™ C V™ be an island containing VJ"*! and V/"*', and &,, : D™ — V7!
be the corresponding two-to-one map. Note that in the case under consideration
this island may be non-trivial and still the Poincaré distance between Vy"*t' and
V/™*! be big (since the precritical puzzle pieces in V~! are not well inside V™~").
Moreover the map ¢,, is not necessarily bounded perturbation of the quadratic map.
These are the circumstances which make this case special.

As m — 2 is a non-central level, pi,, 11 < fi, and by the previous considerations we
are done unless

e The return on level m — 1 is Fibonacci, that is ¢,, V""" = V7" and ¢,,,Vy"t' C V/»
for some puzzle piece V7

e The hyperbolic distance between the puzzle pieces V™ and V" is at least L..

e The return on level m—2 is also Fibonacci: ¢,,_1 V" = V{" ! and g,,,_ V" = V" 7!

for some puzzle piece V"1,

Let V¥ and V/* be the pieces containing the corresponding push forwards of Vj"~*
and V77! along the cascade ("%, m — 1 < k < m —t — 1. Then (6.15) follows
unless:

e The width w,,_;_5 is at most w,, and the distance between VJ"~*~* and V"~ '*
in V™3 is at least L,.

But then by Statement 6.3 applied to the cascade C"™~? the eccentricity of I'™~1!
about 0 is at least e = e(w., L.). As g¢,, is a bounded perturbation of the quadratic
map, by Lemma A.5 the curve I'™ is (0.1, ¢)-pinched, where ¢ = ¢z(e) — 0 as
e — oo. (Note that the pinched region is not necessarily around V{™, since ¢,
may differ from ¢, ). Applying Lemma A.5 again, we conclude that the curve
I+ s ((10C0)~1, C'y/€)-pinched. By Lemma A.3 I'"*! has a definite width inside
V™ VT2 Now Statement 6.2 yields (6.15). Theorem III is proven.
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7. BIG TYPE YIELDS BIG SPACE

Below we will analize a variety of combinatorial factors (like height, return time,
length of a central cascade) which yield a big modulus of the renormalized map.
Altogether they are quite close to a “big renormalization period”, except that
“parabolic or Siegel cascades” may interfere. This is summarized in Theorem 1V’
stated at the end of the section which loosely says that if the periods of R" f are
sufficiently big and there are no “parabolic” or “Siegel cascades” in the principal
nests then there are a priori bounds.

7.1. Big height yields big modulus. Let us start with a quick consequence of
Theorem III. We refer to §3.10 for the terminology used below:

Theorem IV. For any (), there is a x-special family § of the Mandelbrot copies
with the following property. Let f be an infinitely renormalizable quadratic of
S-type. Then mod(R™f)>Q, m=0,1,....

Proof. Let us fix a @ > 0. Take a truncated secondary limb I = L!", and find
g = C(Q)v(L) from Theorem I. Note that ¢ > v(L)/2 for sufficiently big ¢ (inde-
pendently of L). Let us now select all copies M’ of the Mandelbrot set with the
height x(M') > /B, where B = B(q) is the constant from Theorem III. Taking
the union of all these copies over all truncated limbs, we obtain a special family §.

Let us now consider an infinitely renormalizable quadratic-like map f of S-type
with mod(f) > @ (to start, take a quadratic polynomial). Then by Theorem I,
mod(A') > ¢. Hence by Theorem III, mod(Rf) > B x(f) > Q.

By induction, mod(R"” f) > @) for all n. O

7.2. Big return time implies big modulus. The simplest possible way to create
a big modulus is the following. By Lemma 2.8, if the return time [ of the critical
point to a puzzle piece Y*) of a given depth k is big then the pull-back Y *+) of
Y along the orb;(0) has a small diameter (uniformly over a truncated primary
limb), so that mod(Y® \ Y*+D) is big. We can now start a principal nest from
Y®)_ By Theorem IT (§5) we will observe big moduli on all levels down except those
in the tails of cascades. In particular, mod( Rf) is also big if f is renormalizable.

Below we describe more involved situations creating a big modulus. We will rely
on the combinatorial considerations of §3.8. Let Z™ C V" stand for the family of
puzzle pieces V" intersecting w(0). Consider an edge 7"+ of the return graph with
vertices at V]»""'1 € 7"t and V* € I", and let t be the corresponding landing time,
so that gL V;"*' C V;". Then we will use the notation mod(y) for mod(V;* \ g5 V;"+').
If ¢ # 0 then mod(y™) > p,.

Lemma 7.1. Let D" C V"=" be a puzzle piece containing at least one piece of ™.
Let T be a path leading from D" down to some critical piece V"', and let D"** be
the pull-back of D" along this path. Then

mod( D"+ V) >

N | I

rank(D").



PUZZLE 49

Proof. Let {y"*!, ...,9"'} be the edges of I'. By Lemma 3.10, all these edges
except the last one represent univalent maps, and the last one represents a double
covering. Hence

mod(D" V) > §Zmod(’y Ty > 5};;1”_,_;“

and Theorem II (together with the definition of the rank) completes the proof. O

Lemma 7.2. Assume that n—2 is not in the tail of a long central cascade. Assume
that for a puzzle piece Vj”"'1 €It r = T(Vj”"'l) > R. Then there is a level m
such that p,, > L(R), where L(R) — o0 as R — oo.

Proof. Let M > 0. We need to find a level m with u,, > M, provided r is sufficiently
big. If rank(V;"*') > N = 2M/ji, then Lemma 7.1 yields the desired. So let us
assume that

rank(V*') < N

Let 0 = i(0),4(1),... ,i(r) = 0 be the itinerary of V**' through the pieces of the
previous level. Let us consider a nest of puzzle pieces

(7.1) VP=U,DU,.1D...D Uy =V,
where g, 7" Up, = Vi, _;). Then
(7.2) Uppr NUp > 1/2, k=0,...7—1.
Let us pull the pieces Uy, k < r, down along a path I' joining V]»""'1 with a critical

vertex V%!, Denote the corresponding pull-backs by U, If these pull-backs turn
out to be double branched then by (7.2)

(T - 1)ﬂ7

|

1
Pyt > §m0d(Ur_1 N Uo) >

which is greater than M for sufficiently big . Otherwise let us consider the first level
n+ s where U™ hits the critical point. Let us find such an [ that 0 € U\ U/H°.
If r—1—1> N then by (7.2) pnys > M, and we are done. Otherwise

mod(U s N UM*) > (r — N — 2)ja/2.

Then let us repeat the same procedure with U'* instead of U,_,. Note that
rank(U;**) < rank(U,_,), since the pull-back of U,_, through the top central cas-
cade is univalent. Hence this procedure can be repeated at most N times, and the
principal modulus at the end will be at least M, provided (r — N(N + 2))u/2 >
M. O
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7.3. Parabolic and Siegel cascades. We will show that we usually observe a
big principal modulus after just one long central cascade. Let us consider a central
cascade (3.11): The double covering gn41 : V™ — V™ can be viewed as a small
perturbation of a quadratic-like map ¢. with a definite modulus and with non-
escaping critical point.

To make this precise, let us consider the space Q of quadratic-like maps modulo
affine conjugacy supplied with the Carathéodory topology (see [McM2]). Conver-
gence in this topology means Carathéodory convergence of the domains and uni-
form convergence of the maps on compact subsets. Given a p > 0, let Q(u) denote
the set of quadratic-like maps ¢ € @ with mod(g) > p. By Theorem II, the return
maps gpmy1 @ VT — V™ of the principal nest belong to Q(f1).

Compactness Lemma (see [McM2]). The set Q(u) is Carathéodory compact.

Let Qn (resp. Qn(u)) denote the space of quadratic-like maps ¢ : U’ — U from
Q (resp. Q(u)) such that ¢"0€ U, n=0,1,... N.

As Ny On (i) = Quo(p), for any neighborhood U O Q. (u), there is an N such
that Qn(p) C U. In this sense any double map g € Qn (i) is close to some
quadratic-like map ¢, with connected Julia set. In particular, this concerns the
return map ¢,,41 generating a cascade (3.11) of big length N. Moreover, since g1
has an escaping fixed point, the neighborhood of ¢, containing g,, 1 also contains
a quadratic-like map with hybrid class ¢(g.) € IM.

If we have a sequence of maps f, € Qn converging to a map g, € Q..,, we also
say that the f,-central cascades converge to g..

Let us say that the principal nest is minor modified if a piece V™ is replaced by
a piece V" C V" such that cl V"™ C V" for all pieces V;*T' € Zn+1,

Lemma 7.3. Let g. be a quadratic-like map with ¢(g.) € OM which does not have
neither parabolic points, nor Siegel disks. Let g1 be the return map of the principal
nest generating cascade (3.11). Take an arbitrary big M > 0. If g,,41 is sufficiently
close to g. (depending on a priori bound ji from Theorem II) then the principal nest
can be minor modified in such a way that fi, > M for some n > m+ N.

Proof. Take a big number e > 0.

By the above assumptions, the Julia set .J(g.) has empty interior. If g4 is
sufficiently close to g, then TtV -1 = gym+N-1 ig clgse in the Hausdorff metric
to the Julia set J(g.). Hence I'"*¥=! has an eccentricity at least e with respect to
any point z € Vm+N-1,

As the g,, are purely quadratic up to bounded distortion (Theorem II), the curves
Foany Uinaver and Ty vy2 also have big eccentricity with respect to any enclosed
point. Moreover, by the same theorem, there is a definite space in between these
two curves. Hence by Lemma A.2, mod(V™HN+L VmEN+3) ig at least M (e) where
M(e) — o0 as e — .

Let us assume that the non-central return occurs on level m+ N 4+ 1: ¢,y 120 €
VN2 with 4 £ 0. As the map gppnge @ V" TV T2 — VN4 g quadratic up to

bounded distortion, the curve I'"*¥*2 = gV.;"*V+2 has a big eccentricity ¢’ about
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any enclosed point (that is, ¢’ can be made arbitrary big by a sufficiently big choice
of e, depending on a priori bound p). By Lemma A.2

mod(V™ T (g v VT > M (e),

where M(e) — oo as e — oo. Hence mod A™+N+3 > M(e)/2, and we are done.

Let the central return occur on level m + N + 1 but this is not yet a DH-
renormalizable level. Then the corresponding central cascade is finite. Let m +
N + T be the last level of this cascade. Then by Lemma A.2 and Statement 6.2,
HmaNiT+2 > M(e), where M(e) — 0o as € — 0.

Assume finally that m + N + 1 is a DH-renormalizable level. Then let us take
a horizontal curve I' ¢ A™*tV+2 which divides this annulus into two subannuli of
moduli at least fi/2. Let I C A™+N+3 be its pull-back by gpm4n42, and A be the
annulus bounded by I' and I". Then by Lemma A.2 mod(A) > M(e) with M(e) as
above. As this is a minor modification of the nest, we are done. O

7.4. Variation. Let us now improve Theorem IV by taking into account not only
the height but also the other factors yielding big space.

Theorem IV'. Let [ € SL be an infinitely renormalizable quadratic polynomial,
and let P, : z — 2% + ¢, be the straightened R™ f. Assume that
o The set A C Q of accumulation points of the central cascades of P,, (of lengths
growing to 0o ) does not contain parabolic or Siegel maps;
e per(R™f) > p.

Then liminf,_ ., mod(R"f) > Q(p), where the function Q(p) depends on the
choice of the limbs and the accumulation set A, and Q(p) — o0 as p — oc.

Proof. By Theorem II the top modulus of the central cascades of P, is bounded
from below by some fi. Hence the set A C Q(f) is compact. By Lemma 7.3, for
any ) there is a neighborhood ¢ O A such that: If f € U is renormalizable then
mod Rf > @).

As A is the accumulation set for the central cascades of the P, , there is an N
such that all but finitely many of these cascades of length > N belong to #/{. Hence
if the principal nest of P, contains a cascade of length > N then mod(R(F,,)) > @
(for sufficiently big m).

Further, by Theorems I and III, there is a x such that if the height x(F,) > x
then mod(R(P,,)) > Q. Let us also find a T" such that if for some cascade the return
time from Lemma 7.2 is at least 7', then mod(R(F,,)) > Q.

It is easy to see that there is a p such that: If per(P,) > p then either P, has
a central cascade of length at least N, or x(P,) > x, or one of the above return
times is at least 7. In any case mod(R(P,)) > Q.

Now the same argument as for Theorem IV yields a priori bounds. O

8. (GEOMETRY OF QUASI-QUADRATIC MAPS

In this section we discuss real unimodal maps of Epstein class. We introduce
a notion of essential period, and prove that the mod Rf is big if and only if the
corresponding essential period is big. This discussion naturally continues [L4].
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We assume that the reader is familiar with some basics of one-dimensional dy-
namics including the real Koebe Principle (see the book of de Melo & van Strien
[MS] for the reference).

8.1. Essential period. Below we will adjust the combinatorial discussion of §3
to the reall line (see [L4] for details). Let I’ C I be two nested intervals. A
map f : (I’,0I') — (I,01) is called quasi-quadratic if it is S-unimodal and has
quadratic-like critical point 0 € int I’.

Let us also consider a more general class A of maps g : UJ; — J defined on a
finite union of disjoint intervals .J; strictly contained in an interval .J. Moreover, g|J;
is a diffeomorphism onto J for ¢ # 0, while g|.J; is unimodal with ¢(9.J,) C 9J. We
also assume that the critical point 0 € J; is quadratic-like, and that Sg < 0. Maps
of class A are real counterparts of generalized quadratic-like maps of finite type.
To simplify the exposition, let us also assume g|J, is symmetric, i.e., g(z) = g(—z).
Then g|Jo = ho ®, where ®(2) = 2? and h is a diffeomorphism of an appropriate
interval K" D ¢(.J,) onto J. By definition, this map belongs to Epstein class £ (see
[E, S2, L4]) if the inverse branches f~':.J — J; for i # 0 and A~ : J — K admit
the analytic extension to the slit complex plane C \ (R \ J) (such functions are
called Herglotz).

Let I° = [a, @'] be the interval between the dividing fixed point « and the sym-
metric one. Let Y = Y; denote the full Markov family of pull-backs of the interval
I°. Given a critical interval J € M (that is, J 3 0), we can define a (generalized)
renormalization T; f on J as the first return map to J restricted to the components
of its domain meeting the post-critical w(0). If f admits a unimodal renormaliza-
tion Rf = T, f for some J, then there are only finitely many such components,
so that we have a map of class A. Moreover, if f is a map of Epstein class or a
quadratic-like map, the renormalizations T f inherit the corresponding property.

Let I° D I' D ... D I'*! be the real principal nest of intervals until the next
quadratic-like level (that is, I"** is the pull-back of I"™ corresponding to the first
return of the critical point). Let us use the same notation g, : UI} — I"~! for the
real generalized renormalizations as we used for the complex ones.

For o € (0,1), let &, stand for the space of quasi-quadratic maps f: I — I of
Epstein class with |I| < o|l]. In this section we will assume that f € &,. All the
bounds below depend on ¢ but become absolute after skipping first k(o) central
cascades.

Theorem 8.1 (Martens [Ma]). The following real bounds hold: e I™T! is well
inside I'™ unless I™ is in the tail of a long central cascade;

o The return maps g,, : I'™ — I™~! can be decomposed as h,, o ® where h,, : L,, —
1™t is a diffeomorphism of an interval L,, onto I™~! with bounded distortion.

(See also Guckenheimer & Johnson [GJ] for related earlier results on bounds and
distortion.)
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Let us look closer at real cascades of central returns. The return to level n — 1 is
called high or low if g,I™ D I" or g,I" N I" = () correspondingly. Let us classify a
central cascade C = C™tV

8.1 I™ > .. I™N, g0 [N
+

as Ulam-Neumann or saddle-node according as the return to the level m + N — 1
is high or low. In the former case the map ¢4 : I™T! — I"™ is combinatorially
close to the Ulam-Neumann map z — z° — 2, while in the latter it is close to the
saddle-node map z — 2% + 1/4. There is a fundamental difference between these
two types of cascades.

Remark. Unlike the complex situation, on the real line we observe only two types
of the cascades. The reason is that there are only two boundary points in the “real
Mandelbrot set” [-2, 1/4] (compare §7.3).

Consider the return graph T (see §3.8). Let YT(I™) stand for the part of this
graph growing up from the vertex I" (i.e., restrict T to the set of vertices I]’»“, k<n,
which can be joined with I™).

Let us consider the orbit J, = f5I", k = 0,...,1(n), of I" until its first return to
I"=1ie., f'0O1 C 11 Let us watch how this orbit passes through a saddle-node
cascade (8.1). Let us say that a level m + s of the cascade is “branched” if for some
interval J, C I'™ \ I we have: g, 11Jp C I™T=1 0 I™F (note that this can be
expressed in terms of branching of the graph Y (I™)).

Let us eliminate from each saddle-node cascade of the graph Y(/”) the maximal
string of levels m + d,...,m + N — d which don’t contain branched vertices of the
graph. Call the remained graph T.(I"). Let us define the essential return time
l[.(I") as the number of paths in Y.(/") joining I with the top level. The essential
period per,(f) of a renormalizable map f is defined as the essential return time of
an interval I of the renormalizable level.

Let us define the scaling factors

Let us call the geometry of f essentially K -bounded until the next renormalization
level if the scaling factors A, bounded below by K~!, while the configurations
(I"='~\ I, 1) have K-bounded geometry (that is, all the intervals 17, j # 0, and
all the components of 1"~ \ UI} (“gaps”) are K-commensurable). Remark that
the scaling factors A, are allowed to be close to 1.

8.2. Complex bounds. Theorem V. Assume that f admits a unimodal renormal-
ization. Then:
o If per (f) is sufficiently big then the unimodal renormalization Rf admits a
quadratic-like extension to the complex plane. Moreover, mod(Rf) > p(per.(f))
where u(p) — oo as p — 00.
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e Real geometry of [ is essentially K-bounded until the next renormalization level,
with K = K(per.(f)).

In [LY] complex bounds have been proven for infinitely renormalizable maps
with essentially bounded combinatorics (which means that the essential periods
per,(R™f) are uniformly bounded). This yields the Complex Bounds Theorem
stated in the Introduction.

Remark. To get a bound for mod(R™ f) we never go beyond level m, so that our
bounds are still valid for m times renormalizable maps.

Given an interval I, let |I| denote its length, and let D([) denote the Euclidian
disk based upon I as a diameter.

The rest of the section will be occupied with the proof of Theorem V. It relies on
the following geometric fact:

Schwarz Lemma. Let I and J be two real intervals. Let ¢ : CN (RN 1) —
C~ (R~ J) be an analytic map which maps I to J. Then ¢(D(I)) C D(J).

Proof. Just notice that D([) is the hyperbolic r-neighborhood of [ in the slit plane
C~ (R~ 1) (with r independent of ). Since analytic maps are hyperbolic contrac-
tions, the statement follows. O

Lemma 8.2. If a scaling factor A, is sufficiently small then the generalized renor-
malization ¢ni1 : UIJ”‘"1 — I™ admits a (generalized) polynomial-like extension to
the complex plane, g1 : UV]»""'1 — V™. Moreover, mod(V" \ V1) > p(A) — o
as A — 0.

Proof. Let us select V™ as the Euclidean disc D = D(I™). Let us pull it back by
the inverse branches of g,,,;. We obtain domains Vj""'1 based on the intervals I]”"'l.
Moreover, g,.1 : Vj""'1 — D is a double branched covering for 7 = 0 and is univalent
otherwise.

By the Schwarz Lemma, V;"*' C D(I7*") € D for j # 0.

Let us estimate the size of VJ**'. Let ¢ be the first return time of the critical point

back to I" under iterates of g,. Let .J 3 ¢,(0) be the interval which is monotonically
mapped onto I"™ under g'~'. Then by the real Koebe Principle,

(8.2) |J|/ dist(J,01""1) = O(N,).
Let us consider the decomposition
Guir " =g oho @,

where h : (K, L) — (I"7',J) is a diffeomorphism of an appropriate interval K onto
I"~!. Using the real Koebe Principle once more, we derive from (8.2) that

(8.3) L]/ dist(L,0K) = O(An).

By the Schwarz Lemma, the pull-back U of D by the inverse branch of ¢g'=1 o h :
L — I" is contained in D(L). Hence V"*! C ®~'D(L) and by (8.3)

diam V" /|1 = O(V/A,).
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It follows that V" lies well inside D = D(I™), and we have a generalized polynomial-
like map with desired properties. O

In the following two lemmas we analyse the geometry of long central cascades.
Let us call a unimodal map saddle-node or Ulam-Neumann if it is topologically
conjugate to z — 2>+ 1/4 or z — 2? — 2 correspondingly.

Lemma 8.3. Let us consider an Ulam-Neumann cascade 8.1. If it is sufficiently
long then the generalized renormalization ¢, y11 admits a polynomial-like extension
to the complex plane with o definite modulus. Moreover, mod g, nyi1 — 00 as
N — oc.

Proof. Take the Euclidean disk D = D(I™*Y) and pull it back by the inverse
branches of g, yy11. We obtain domains V]»m"'N"'1 based upon the intervals I]’»”"'N"'l.
By the Schwarz lemma, all the off-critical domains ij"'l"'l, Jj # 0, are contained in
the round dises D(I]"*¥*"), and hence are strictly contained in D.

Let us estimate the size of the central domain V = V;"t¥*!. By Theorem 8.1,
I+ is well inside I™. If the scaling factor \,,,; is small then the statement follows
from Lemma 8.2 and Theorem II. So we can assume that I™*! is commensurable
with I"™. By compactness argument, if the cascade is long enough then the map
g = Gy I — I™, with the domain rescaled to the unit size, is C''-close to an
Ulam-Neumann map. It follows that [I™*% < I™*V]| decrease with k at a uniformly
exponential rate. Hence for a sufficiently long cascade, /m+V-1
compared with I7+V,

Let g(0) € I = I, j # 0. Let U be the pull-back of D(I™*"V~1) by the inverse
branch of g;ﬁl_N : ImTN=1 T extended to the complex plane. By the Schwarz
Lemma, U C D(I).

Furthermore, by Theorem 8.1, there is an interval L D ®(I™*") such that
glI™*N = ho®, where h: L — I™*V=" is a diffeomorphism of bounded distortion.
Hence the image ®I™*tN = h='gI™™N 5 h='I™*N occupies at least (1 — O(¢))-
portion of L.

It follows that h_ U C D(h™'I)is of size O(e€) as compared with |L|. Hence V C
&1 D(h'I) is of size O(/€) as compared with [I™*V]|, and the lemma follows. [J

N IV s etiny as

Lemma 8.4. All saddle-node patterns (8.1) of the same length with commensurable
I™ and I™*! are k-qs equivalent, with an absolute k.

Proof. Let g : I' — [0,1] be a quasi-quadratic map of Epstein class (and perhaps
escaping critical point): ¢ € £. By definition, ¢ = h o ® with a diffeomorphism A
whose inverse admits the analytic extension to C~ [0,1]. Let us supply this space
with the Montel topology on the h=!.

Takea § € (0,1/2). The set of maps g € £ with § < |I’| < 1—¢is compact. Hence
given a long saddle-node cascade (8.1), the map G obtained from g,y : ™" — I™
by rescaling I"™ to the unit size must be close to a saddle-node quasi-quadratic map.
Hence we can reduce GG to a form z — z 4+ € 4 (z) where 9(z) > 0 is uniformly
comparable with z? (here the fixed point of the nearby saddle-node map is selected
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as the origin). Moreover, we will see in a moment that ¢ is determined, up to a
bounded error, by the length of the cascade.

Take a big @ > 0. When |z| < av/€, the step G(z) — z is of order e. Otherwise
1(z) dominates over €, and in the chart ( = 1/z the step is of order 1. It follows
that the gs class of the cascade is determined by ¢, which in turn is related to the

length of the cascade by N < 1/y/e. O
The following lemma refines Lemma 7.2 in the case of real cascades.

Lemma 8.5. Let us consider a cascade (8.1). Let t = t,,,4n be the mazimal return
time of the intervals gpyn 1 I TN T C IHN=1 back to I™ N under iterates of the
Bernoulli map G4y, see (3.12). Then there exists a level | such that A < A(t)
where A(t) — 0 as t — oo.

Proof. If some interval I]m"'1 is not well inside I"™ then by Theorem 8.1 and Lemma 8.4,
the level m follows a long Ulam-Neumann cascade. Then the scaling factor A, 41
is small. It follows that A, ;ny41 is small as well (see [L4], §2, for the estimate of
AmaN+1 Via Apir).

If all the intervals I]’»”‘H are well inside of I then repeat the argument of
Lemma 7.2 on the real line using negative Schwarzian in place of conformality and
the Bernoulli map G, in place of g,. O

Let x(m) stand for the height of I™, that is, the number of central cascades
preceding it.

Lemma 8.6. If the height x(f) is sufficiently big then there is an interval J € M
such that the generalized renormalization T; f admits a polynomial-like extension
to the complex plane with a definite principle modulus p. Moreover, J lies on a
bounded height, i.e., J D I"™ with a bounded x(m).

Proof. Take small ¢ > 0 and § > 0, and consider the inequality
(8.4) A > (1 =8)A_1.

If (8.4) fails to happen on the first s = loge¢/log(1 — §) + 1 levels then we come
up with an e-small scaling factor, and Lemma 8.2 yields the desired, provided e is
small enough.

Otherwise a desired interval .J exists by [L4], §4 (provided é is small enough). O

Lemma 8.7. Assume f is renormalizable. If per (f) is sufficiently high, then the
renormalization Rf is polynomial-like. Moreover, mod(Rf) > p(per.(f)) where
pw(p) — o0 asp — oo .

Proof. Big essential period amounts to one of the following circumstances:

(i) The height of x(f) is big; or

(ii) For some cascade (8.1) (maybe of length 1) the return time ¢,,, 5 of Lemma 8.5
is big; or

(iii) There is a long Ulam-Neumann cascade; or
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(iv) There is a saddle-node cascade (8.1) and an interval [;"*' which lands deep
inside the cascade under one iterate of ¢,,.

Assume that (i) occurs. Then the statement follows from Lemma 8.6 and Theo-
rem IIL

If (ii) happens then by Lemma 8.5 we observe a small scaling factor on some
level, and Lemma 8.2 yields the statement.

If (iii) occurs then the desired follows from Lemma 8.3 and Theorem II.

Assume finally that (iv) happens. Let J = I7'*'. Then g, J C I ~ I+
for d < i < N —d, with big d. Then by Lemma 8.4 ™+ ~ [™+*! is tiny in I™. It
follows that J is tiny as compared with the dist(J,0I™). By [L4], this produces a
small scaling factor several levels down (if rank(J) is big, use Lemma 3.6 of [L4];
otherwise use Lemma 2.12 of that paper). Now Lemma 8.2 and Theorem II complete
the proof. O

Lemma 8.8. [f per (f) is bounded, then the geometry of f is essentially bounded
until the next renormalization level.

Proof. Assume that the geometry is bounded on level n — 1, and let us see what
happens on the next level. Given an z € w(c¢) N (I"~' \ I"), let J(2) denote the
pull-back of I corresponding to the first landing of orb(z) at I™. As the landing
time under iterates of g, is bounded, J(z) is commensurable with /"~1.

To create the intervals I]”‘H, we should pull all intervals J(z) back by ¢, : [" —
I"'. As g, is a quasi-quadratic map, all non-central intervals I]”"'1 and the gaps in
between are commensurable with 1.

The only possible problem is that the central interval I"*! may be tiny in I™.
This may happen only if the critical value ¢,0 € J(z) is very close to the d.J(z).
Let [ be such that ¢!.J(z) = I". Since ¢!, : J(z) — I" is gs, go410 = ¢g'F' turns
out to be very close to 91" (“very low return”). But then g¢,410 belongs to some
non-central interval I7*" whose Poincaré length in I™ is definite (as we have shown
above). This is a contradiction.

So when we pass from one level to the next, the geometric bounds change grad-
ually. But the same is also true when we pass through a saddle-node cascade (8.1).
Let us consider the Bernoulli map G : UK;”H — I™ associated with this cascade
(see §3.6), where the K"t C ™+~ < "™+ are the pull-back of the I}"**,
Observe that for ¢ < NV the transit maps
P KRR KA SN M

have bounded distortion, as its Koebe space spreads over the appropriate compo-
nents of I™ ~. I"™*+3, Moreover, the passages from the level m to m + 1 and from
m+ N —2tom+ N — 1 have bounded distortion by Theorem 8.1 and Lemma 8.4.

Hence if the geometry of the configuration (I™ ~ I™*1 {["**}) on level m
is bounded, then the geometry of the configuration (/™= Im"'N,K]’»”"'N) is
bounded as well. Moreover, by Lemma 8.4, I™*¥ is commensurable with ™ +V =1
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I™*+N . Thus the configuration (I™*V=1 {K”*"1) of level m 4+ N — 1 has bounded
geometry.

Let us now define the intervals J(z), € w(c) N I™*N~1, as the pull-backs of
I+ corresponding to the first landing of orb(z) at I™*". Then it follows from the
bounded geometry on level m + N — 1 together with the bounded return G-times
and the landing depths that the configuration of the intervals J(z) has bounded
geometry in [mTN-L

Let us now pull these intervals back to the next level m + N. Then the same
argument as in the beginning of the proof shows that the geometry on level m + N
is still bounded. O

Now Theorem V follows from the last two lemmas.

Remark. Theorem V is still valid for higher degree real unimodal polynomials
2+ 2%+ ¢, ¢ € R, except for the growing of j(p). The same proof works, with the
following adjustment of logic. Proof of Lemma 8.6 shows that generalized quadratic-
like maps with a definite modulus can be created on a sequence of levels m; with
bounded x(m;41) — x(m;). Together with the Remark at the end of §5 this implies
that all the generalized renormalizations T"(*)*! f have a definite principal modulus
(where n(k) counts the non-central levels). In particular, mod(Rf) is definite.

Part II. Rigidity and local connectivity
9. SPACE BETWEEN JULIA BOUQUETS

In this section we will prove local connectivity of the Julia sets satisfying the
secondary limbs condition with a priori bounds (Theorem VI).

9.1. Space and unbranching. Let J* denote the little Julia sets of level m, that
is, J*” = J" = J(R™f) and J™ = fiJ™, ¢ =0,...,7, — 1. They are organized
in the pairwise disjoint bouquets B* = BI"(f) of the Julia sets touching at the
same periodic point. Namely, if level m — 1 is immediately renormalizable with
period [ then each B" consists of [ little Julia sets Ji™ touching at their S-fixed
points. Otherwise the bouquets B;" just coincide with the little Julia sets J*. By
B™ = B we will denote the critical bouquet containing the critical point 0. Let
J" =J"(f) = UJ" = U; B". Finally let K™ be little filled Julia sets.

We will use the notation Fj, for the quadratic-like map f"~ near any little Julia
set JI* (it should be clear from the context which one is considered). In particular,
F,, = R™ [ near the critical Julia set J™ 3 0.

Recall that Q(u) stands for the space of quadratic-like maps f with mod(f) >
> 0 supplied with the Carathéodory topology (see §7.3). Take a little copy
M’ C M of the Mandelbrot set truncated at the root. Let Q(u,M’) denote the
subspace of Q(u) consisting of renormalizable quadratic-like maps f whose hybrid
class belongs to M.

Let us have a family F of sets X, C C depending on some parameter a ranging
over a topological space 7. This dependence is said to be (sequentially) upper semi-
continuous if for any a(i¢) — a, the Hausdorff limit of X is contained in X,. For
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example it is easy to see that the filled Julia set K(f) of a quadratic-like map f
depends upper semi-continuously on f. Let us say that a family F of sets X; C C
is (upper) semi-compact if any sequence X,, of these sets contains a subsequence
Xy converging in Hausdorff topology to a subset of some X € F.

Lemma 9.1. The little filled Julia sets K!(f) form a semi-compact family of sets
as f ranges over the space Q(u, M").

Proof. By the Compactness Lemma (see §7.3), the space Q(u,M’) is compact.
Moreover the quadratic-like map F) depends continuously on f € Q(p, M’) near
any K}. In turn, the little filled Julia sets K} depend upper semi-continuously on
F. 0O

Lemma 9.2. Let [ be a quadratic-ike map of class SL with complex a priori
bounds. Then there is a definite space in between its bouquets B}".

Proof. Let us take a bouquet B™. Let 7™ stand for the set of indices 7 such that
B]’»”"'1 C B™. We will show first that there is a definite annulus

™ cC~ | Br,

]'el'm

which goes around B™*! but does not go around other bouquets B]m-"l, Jerm.

If R™ f is not immediately renormalizable, then this follows from Theorem IT (ii).
So assume that R™ f is immediately renormalizable.

If B™ = J™, then it is nothing to prove as there is only one bouquet B™*+!
inside B™. Otherwise there are only finitely many renormalization types producing
the bouquet B™ (which correspond to the little Mandelbrot sets attached to the
main cardioid and belonging to the selected secondary limbs). By Lemma 9.1, the
bouquets B]’»”"'1 contained in B™ belong to a compact family of sets. As they don’t
touch each other, there is a definite space in between them.

Let N(L,¢) denote an (ediam L)-neighborhood of a set L (that is, the set of
points on distance at most ¢ diam L from L). We have shown that there is an ¢ > 0
such that the neighborhood N(B™*! €) does not intersect other bouquets BJ'*!
contained in the same B™. In particular, N(B', ¢) does not intersect any other B]»1
(as all of them are contained in B = J(f)).

Let us show by induction that

(9.1) N(B™, e)N B =0, k#0
Assuming this for m, we should show that
(9.2) N(B™!' e)yn Bt =0, j #0.

As we already know (9.2) for j € 7™, let j 7. Then B]m"'1 C B} for some k # 0,
while N(B™*! €) C N(B™,¢), and (9.2) follows from (9.1).

What is left, is to show that there is a definite space around any bouquet B]’»”"'1
(not only around the critical one). But there is an iterate f' which univalently maps
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B;”’H onto B™*!. Pulling back the space around B™*! we obtain the desired space
about B;”’H. O

An infinitely renormalizable map f is said to satisfy an unbranched a priori bounds
condition (see [McM3]) if for infinitely many levels m, there is a definite space in
between J™ and the rest of the postcritical set, w(0) ~ J™.

Lemma 9.3. A map f € SL with a priori bounds satisfies an unbranched a priori
bounds condition.

Proof. We will show that the unbranched condition can fail only if the level m is
not immediately renormalizable, while m — 1 is immediately renormalizable. As the
complimentary sequence of levels is infinite, the lemma will follow.

If R™~1f is not immediately renormalizable then the bouquet B™ coincides with
the little Julia set J™. By Lemma 9.2, there is a definite space in between J™ and
I J7 As w(0) N J™ C J™ N J™, the unbranched condition holds on level m.

Assume now that both levels m — 1 and m are immediately renormalizable. Then
we will show that there is a definite space in between J™ and B™+! = U#OB]’»”H.

By Lemma 9.2, there is a definite space in between B™ O J™ and B™t! < B™.
So we should check that there is a definite space in between J™ and B™*! N B™
(that is, the union of non-critical bouquets B]**" contained in B™). But J™ does
not touch any such B]’»”"'l. Indeed, the only point where they can touch could be
the p-fixed point 3,, of J™. But one can easily see that the little Julia sets of level
m + 1 never contain f,,. By Lemma 9.1 there is a desired space.

Finally, as w(0) ~ J™ C B™*!, the statement follows. O

Remark. If R™ f is not immediately renormalizable, while R™~' f is immediately
renormalizable, then the unbranched condition can fail. Indeed in this case there
are several Julia sets J]” which touch at the common fixed point 3,, € J™. But the
postcritical set w(0) N J* can come arbitrarily close to 3,, (when R™ f is a small
perturbation of a map whose critical orbit eventually lands at f,,).

9.2. Local connectivity of Julia sets. Using Sullivan’s a priori bounds Hu and
Jiang [HJ] proved that the Feigenbaum quadratic polynomial has locally connected
Julia set. Then a more general result of this kind was worked out: Any infinitely
renormalizable quadratic map with unbranched a priori bounds has locally con-
nected Julia set (see [J, McM3]). Together with Lemma 9.3 this yields:

Theorem VI. Let f € SL be an infinitely renormalizable quadratic polynomial
with a priori bounds. Then the Julia set J(f) is locally connected. In particular,
all maps from Theorems IV and IV’ of §7 have locally connected Julia sets.

Proof. 1 learned the argument given below from J. Kahn (Durham 93).

A priori bounds imply that the “little” Julia sets J™ shrink down to the critical
point. Indeed let f,, = R"f = f™ : U}, — U,, where mod(U,, \ U/ ) > € > 0, with
an € independent of m. Clearly U,, does not cover the whole Julia set.

Let T, C U, \ U/ be a horizontal curve in the annulus U,, ~\ U}, which divides
it into two sub-annuli of modulus at least €/2, and 17, C U], be its pull-back by f,,.
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By the Koebe Theorem, these curves have a bounded eccentricity about 0 (with
a bound depending on ¢). Since the inner radius of curve I, about 0 tends to 0
as m — oo (it follows from the fact that the sufficiently high iterates of any disk
intersecting J(f) cover the whole J(f)), the diam 17, — 0 as well. All the more,
diam(.J,,) — 0 as m — oo.

Let us take a 6 > 0, and find an m such that J,, is contained in the Dj.

Let us now inscribe into D5 a domain bounded by equipotentials and external rays
of the original map f. Let 3,, denote the non-dividing fixed point of the Julia set
J™ and 8! = —p,, be the symmetric point. Let us consider a puzzle piece P™° 3 0
bounded by any equipotential and four external rays of the original map f landing
at O, and /. Thisis a “degenerate” domain of the renormalized map F, (see §2.5).
By definition of the renormalized Julia set, the preimages P™* = F~*P™? shrink
down to J™. Hence there is a puzzle piece P™' contained in the Ds. As J(f)n P™!
is clearly connected, the Julia set J(f) is locally connected at the critical point.

Let us now prove local connectivity at any other point z € J(f). This is done
by a standard spreading of the local information near the critical point around the
whole dynamical plane. Let us consider two cases.

Case (i). Let the orbit of z accumulates on all Julia sets J™. Let m be an
unbranched level. Then there is an [ = [(m) such that the puzzle piece P™' is well
inside C ~\ (w(0) ~ J™).

Take now the first moment & = k(m) > 0 such that f¥z € P™!. Let us consider
the pull-backs @™' 5 z of P™! along the orbit orby(z). By Lemma 3.3, this pull-
back is univalent. Moreover, it allows a univalent extension to a definitely bigger
domain.

By the Koebe Theorem, Q™' has a bounded eccentricity about 2. Since the inner
radius of this domain about z tends to 0 as m — oo, the diam Q™' — 0 as well. As
Q™' N J(f) are connected, the Julia set is locally connected at z.

Case (ii). Assume now that the orbit of z does not accumulate on some J™.
Hence it accumulates on some point ¢ € w(0). Let us consider the puzzle associated
with the periodic point 3, (so that the initial configuration consists of a certain
equipotential and the external rays landing at f3,,). Since the critical puzzle pieces
shrink to J™, the puzzle pieces Yi(l) of sufficiently big depth [ containing a are
disjoint from w(0) (there are several such pieces if a is a preimage of 3,,). Take such
an [, and let X be the union of these puzzle pieces. It is a closed topological disk
disjoint from w(0) whose interior contains a.

Consider now the moments k; — oo when the orbit of 2z lands at int X, and pull
X back to z. By the same Koebe argument as in case (i) we conclude that these
pull-backs shrink to z. It follows that J(f) is locally connected at z. O

9.3. Standard neighborhoods. In this section we will construct some special
fundamental domains near little Julia bouquets. Let us consider first the non-
immediately renormalizable case when the construction can be done in a particularly
nice geometric way.
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Lemma 9.4. Let f be m times renormalizable quadratic map. Assume that the
space in between the little Julia sets J[™ is at least u > 0. Then there are disjoint
fundamental annuli A7 around little Julia sets J*, with mod A7 > v(u) > 0.

Proof. Let us consider the Riemann surfaces § = C~J™ and S = C~ f=1]J™ C .
Then f : 5" — § is a double covering. Let us uniformize S5, that is represent
it as the quotient H?/T" of the hyperbolic plane modulo the action of a Fuchsian
group. In this conformal representation S admits a compactification S U 35 to a
bordered Riemann surface, with the components 95/ of the "ideal boundary” 9.9
corresponding to the little Julia sets J/”.

Let § = SUASUS be the double of 5, that is (C~\A(T))/T, where A(T') C S"is the
limit set of I'. The boundary components 0.5/ are geodesics in 5. Moreover, these
geodesics have hyperbolic length bounded by a constant I = L(p) independent of
m.

Let 0 : § — S be the natural anti-holomorphic involution of §. Let S’ = 5" and
§ = 5"UdSUS C 5 be the double of S’ inside S. Then f admits an extension
to a holomorphic double covering f:5 =8 commuting with the involution o. Its
restriction f|85f” — 057 is a double covering, while the restrictions to the other
boundary components §57" — 957}, are diffeomorphisms.

Let C7"(r) D 057 stand for the hyperbolic r-neighborhood of the geodesic 9.57.
By the Collar Lemma (see [Ab]), there is an r = r(L) (independent of the particular
Riemann surface and geodesics) such that the collars C" = C™(r) are pairwise
disjoint. Moreover, mod(C7™) > u(L) > 0.

Let us now take such a collar C' = C7?, and let v = 95", Let C" C 5" N C be
the component of f‘pC containing v (where p is the period of the little Julia sets).
Then fp : (" — (s a double covering preserving 7. As we have in the hyperbolic

metric of 5
[1p) =21,
y

there is a point z € v such that || D f?(2)|| > 2. This easily implies that || D f=7(¢)|| <
g(a) < 1 if the hyperbolic distance between fpz and ¢ does not exceed a. In
particular, | Df=7[|(¢) < ¢ = ¢(L,r) < 1 for all ¢ € C.

It follows that C” is contained in the hyperbolic r/¢-neighborhood of 7, and hence
mod(C' \ C") > p(r,q) = p(p). Let now A? = (C'\C')NnS. O

Note that in the above lemma we don’t assume a priori bounds but just a definite
space between the Julia sets (which thus implies a priori bounds). Assuming a pri-
ori bounds, let us now give a different construction which works in the immediately
renormalizable case as well.

Let us consider a bouquet B;" = U;JI" of level m, where .J[" touch at point a,,_;.
Let b € J” be the points F,,-symmetric to a,,_y, that is, I}, = a,,_; (7co-fixed
points”). Let us consider the domain Y7}* bounded by the pairs of rays landing at
these points (defined via a straightening of F,,,_,), and p,, arcs of equipotentials. Let
us then thicken this domain near the points b* as described in §2.5 (that is, replace
the rays landing at b* by nearby rays and little circle arcs around b7*). Denote
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the thickened domains by U™ (see Figure 10). We also require that these domains
are naturally related by dynamics so that fT7" = T;* and fU™ = U;" whenever
fB" = B* and B" is non-critical. Let us call U™ a standard neighborhood of the
bouquet B*. Let U™ = UU™.



