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Algebraic de Rham theorem and Baker–Akhiezer function

I. M. Krichever† and L. A. Takhtajan

Abstract. For the case of algebraic curves (compact Riemann surfaces),
it is shown that de Rham cohomology group H1

dR(X,C) of a genus g of the
Riemann surface X has a natural structure of a symplectic vector space.
Every choice of a non-special effective divisor D of degree g on X defines
a symplectic basis of H1

dR(X,C) consisting of holomorphic differentials and
differentials of the second kind with poles on D. This result, which is the
algebraic de Rham theorem, is used to describe the tangent space to Picard
and Jacobian varieties of X in terms of differentials of the second kind, and
to define a natural vector fields on the Jacobian of the curve X that move
points of the divisor D. In terms of the Lax formalism on algebraic curves,
these vector fields correspond to the Dubrovin equations in the theory of
integrable systems, and the Baker–Akhierzer function is naturally obtained
by the integration along the integral curves.

Keywords: Riemann surface, divisor, line bundle, Riemann–Roch theo-
rem, differentials of the second kind, algebraic de Rham theorem, Picard
and Jacobian varieties, vector field on the Jacobian variety, Lax represen-
tation, Dubrovin equation, Baker–Akhiezer function.

§ 1. Introduction

Let X be a smooth algebraic variety over C with the classical topology of a com-
plex manifold. According to Atiyah and Hodge [1], a closed meromorphic p-form φ
on X is called differential of a second kind if it has zero residues on open subsets
U = X \D for sufficiently large divisors D. A far-reaching generalization of Atiyah
and Hodge results was given by Grothendieck [2]. The quotient groups

{p-forms of the second kind}
{exact forms}

have a natural interpretation in terms of a spectral sequence of certain complex of
sheaves of meromorphic forms on X (see [3], Ch. 3, § 5). In particular,

H1
dR(X,C) ≃

{1-forms of the second kind}
{exact forms}

.
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When X is a smooth algebraic curve of genus g, this isomorphism follows from
the Riemann–Roch theorem. It turns out that in this case the space of differen-
tials of the second kind carries a natural skew-symmetric bilinear form, which is
non-degenerate when taking a quotient by the subspace of exact forms. Using this
bilinear form, in Theorem 1 we give a more explicit formulation of the algebraic de
Rham theorem. Specifically, we show that each non-special effective divisor D of
degree g on the Riemann surface X defines a symplectic basis of H1

dR(X,C), which
makes it possible to explicitly describe a complement to the Lagrangian subspace
of holomorphic 1-forms on X as the subspace of differentials of the second kind
with the poles in D.

In § 4, it will be shown that every non-special effective divisor D of degree g
on X defines an explicit isomorphism between the vector space H0,1(X,C) and
the Lagrangian subspace of differentials of the second kind with poles in D. This
allows us to explicitly describe the tangent space to the Picard variety (and its
“incarnations”, Albanese and Jacobian varieties) in pure algebro-geometric terms.

It is quite remarkable that this formalism is connected with the theory of inte-
grable systems. In the standard approach (see, for example, [4]), an integrable
system is described by the zero curvature equation

∂L

∂t
− ∂M

∂x
+ LM −ML = 0,

where L(x, t, λ) and M(x, t, λ) are certain r × r matrix-valued rational functions
of the spectral parameter λ ∈ CP1 which also depend on extra arguments x and t
(physical space and time variables). In [5], [6] by the first author, the zero curvature
formalism was extended to the case when spectral parameter varies on an algebraic
curve.

Namely, it was shown in [5] that a natural framework for this generalization is
provided by the Hitchin system expressed in terms of Tyurin parameters for stable
holomorphic vector bundles of rank r and degree rg on an algebraic curve. Cor-
respondingly, the rational functions L on CP1 become special r × r meromorphic
matrix 1-forms L(z) dz on an algebraic curve, and the set of such matrices is param-
eterized by the moduli space (more precisely, by its Zariski open subset) of stable
holomorphic vector bundles of rank r and degree rg (see [5] for details). A similar
explicit description is given for r × r meromorphic matrix-valued functions M(z).

It turns out that, in the simplest case r = 1, this formalism is still non-trivial and
is naturally connected with Theorem 1 (see the related discussion in § 3). Namely,
as shown in § 5, the meromorphic 1-forms L(z) dz become differentials of the first
kind on an algebraic curve X, while analogs of M(z) are meromorphic functions f
defined using two non-special effective divisors D and D0 of degree g on X. The
varying divisors D parameterize the Jacobian of X with the base point D0, and the
vector fields describing the motion of points of D are naturally expressed in terms
of the meromorphic functions f .

Remarkably, in the case when X is a hyperelliptic curve, equations (5.3) for the
integral curves of these vector fields coincide with the Dubrovin equations arising
in the theory of finite-gap integration of the Korteweg–de Vries equation [7]. More-
over, integrating meromorphic functions f along these integral curves and using
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the Dubrovin equations, we naturally obtain the Baker–Akhiezer function, a funda-
mental object in the algebro-geometric approach to integrable systems, which was
introduced by the first author in [8].

The second author is grateful to the referee for constructive remarks and sug-
gestions.

§ 2. Differentials of the second kind

Let X be a connected compact Riemann surface of genus g with classical topol-
ogy. We denote by OX the sheaf of germs of holomorphic functions on X. Let MX

be the sheaf of germs of meromorphic functions on X, and let M be the vector
space of meromorphic functions on X. For every divisor D on X, let L = O(D)
be the holomorphic line bundle associated with D, and let H0(X,L) be the vector
space of holomorphic sections of L over X. The isomorphism

H0(X,L) ≃ LD = {f ∈ M : (f) +D ⩾ 0}.

is very useful.
From the Riemann–Roch theorem together with the Kodaira–Serre duality it

follows that
h0(L)− h0(KX − L) = degL+ 1− g,

where h0(L) = dimCH
0(X,L), degL is the degree of L, and KX is the canonical

class of X (the holomorphic cotangent bundle to X).
Let d be the exterior derivative on X. The sheaf dMX is a sheaf of germs of dif-

ferentials of the second kind on X and Ω(2nd) = H0(X,dMX) is the infinite-dimen-
sional vector space of the differentials of the second kind (the meromorphic 1-forms
on X with zero residues).

The infinite-dimensional vector space Ω(2nd) has the natural skew-symmetric
bilinear form1

ωX(θ1, θ2) =
∑
P∈X

Res
P

(d−1θ1θ2), θ1, θ2 ∈ Ω(2nd),

where d−1θ1 denotes any locally defined function f such that df = θ1 (the local
antiderivative). The ambiguity in the choice of f does not matter.

Indeed, it is clear that the bilinear form ωX is defined by a finite sum and the
choice of an additive constant in the definition of a local antiderivative is irrelevant.
The skew-symmetry of ωX follows from the basic property

Res
P

(f1 df2) = −Res
P

(f2 df1),

where the meromorphic functions f1 and f2 are the local antiderivatives of θ1 and
θ2 in a neighbourhood of P ∈ X.

1Analogues of the skew-symmetric bilinear form ωX and of the algebraic de Rham theorem
for meromorphic quadratic differentials will be considered in a forthcoming paper by the second
author.
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§ 3. Algebraic de Rham theorem

In abstract form, the algebraic de Rham theorem reads as follows:

H1
dR(X,C) ≃ Ω(2nd)/dM, (3.1)

which is easily proved using the sheaf-theoretic de Rham isomorphism

H1
dR(X,C) ≃ H1(X,C),

where C is the locally constant sheaf.
Indeed, consider the short exact sequence of sheaves

0 → C i−→ MX
d−→ dMX → 0

and the corresponding exact cohomology sequence

H0(X,MX)
d−→ H0(X,dMX)

δ−→ H1(X,C) → H1(X,MX).

By the Riemann–Roch theorem,

H1(X,O(D)) = {0}

if degD > 2g − 2, which implies (see, for example, [9], Ch. 2, § 17.7)

H1(X,MX) = {0},

which proves (3.1).
Using the bilinear form ωX , we can make isomorphism (3.1) more concrete.

Namely, we have the following result (see [10], Ch. 6, § 8, [11], Ch. III, § 5.3, § 5.4,
and [12], Theorem 4).

Theorem 1. The following assertions hold.
(i) The restriction of the bilinear form ωX to Ω(2nd)/dM is non-degenerate and

dimC Ω(2nd)/dM = 2g.

(ii) Each non-special effective divisor D of degree g on X defines the isomor-
phism

Ω(2nd)/dM ≃ Ω(2nd) ∩H0(X,KX + 2D).

(iii) Let D = P1+· · ·+Pg be a non-special divisor of degree g with distinct points.
For every choice of local coordinates in the neighbourhoods of Pi , the vector space
Ω(2nd) ∩ H0(X,KX + 2D) has the basis {ϑi, τi}gi=1 symplectic with respect to the
bilinear from ωX ,

ωX(ϑi, ϑj) = ωX(τi, τj) = 0, ωX(ϑi, τj) = δij , i, j = 1, . . . , g.

This basis consists of differentials of the first kind ϑi and differentials of the second
kind τi uniquely characterized by the conditions

ϑi =
(
δij +O(z − zj)

)
dz and τi =

(
δij

(z − zj)2
+O(z − zj)

)
dz,

where zj = z(Pj) for a local coordinate z at Pj , and i, j = 1, . . . , g .
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Proof. Let (θ)∞ =
∑l

i=1 niQi be the polar divisor of θ ∈ Ω(2nd), ni ⩾ 2. Since
D is non-special, h0(KX −D) = 0, and by Riemann–Roch formula we have h0(D+
nQi) = n+1 for n ⩾ 0. Thus if Qi is not a point of D, there exists a meromorphic
function fi ∈ LD+(ni−1)Qi

such that

ord
Qi

(θ − dfi) ⩾ 0.

If Qi is a point of D, there is a function fi ∈ LD+(ni−1)Qi
such that

ord
Qi

(θ − dfi) ⩾ −2.

(In this case, h0(D) = 1, and hence one can not adjust the principle part of dfi
at Qi to cancel possible second order pole of θ.) So, for f =

∑l
i=1 fi, we have

(θ − df) ⩾ −2D,

which proves assertion (ii).
The dimension formula in (i) easily follows from assertion (ii) since

dimC Ω(2nd) ∩H0(X,KX + 2D) = h0(X,KX + 2D)−h0(X,KX +D)+h0(X,KX)

= (3g − 1)− (2g − 1) + g = 2g.

To prove assertion (iii) and the remaining part in assertion (i), consider the linear
map

L : Ω(2nd) ∩H0(X,KX + 2D) → C2g,

defined as follows. For each θ ∈ Ω(2nd) ∩H0(X,KX + 2D), let αi(θ), βi(θ) ∈ C be
such that

θ

dz
− αi(θ)−

βi(θ)

(z − zi)2
= O(z − zi)

near Pi. We also set

L(θ) =
(
α1(θ), β1(θ), . . . , αg(θ), βg(θ)

)
.

The divisor D is non-special, and hence the map L is injective, and therefore, is
an isomorphism, and we define ϑi and τi to have only non-zero components of L to
be, respectively, αi = 1 and βi = 1. This proves Theorem 1.

Remark 1. The choice of a non-special effective divisor D on X with g distinct
points Pi and local coordinates is as an algebraic analogue of the choice of a-cycles
on a Riemann surface. Correspondingly, the differentials τi are analogues of differ-
entials of the second kind with second-order poles, zero a-periods and normalized
b-periods. The symplectic property of the basis {ϑi, τi}gi=1 is an analogue of the
reciprocity laws for differentials of the first kind and the second kind (see [13],
Ch. 5, § 1, and [14], Ch. VI, § 3).

Remark 2. Let Ω(2nd)(2D) be the subspace in Ω(2nd) spanned by τi,

Ω(2nd)(2D) = Cτ1 ⊕ · · · ⊕ Cτg.

Then Ω(2nd)(2D) and H0(X,KX) are Lagrangian subspaces in Ω(2nd)/dM dual
with respect to the pairing given by the symplectic form ωX .
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§ 4. Tangent space to the Picard variety

We have the decomposition

H1
dR(X,C) = H1,0(X,C)⊕H0,1(X,C) (4.1)

with natural pairing

H1,0(X,C)⊗H0,1(X,C) ∋ α⊗ β 7→ (α, β) =

∫
X

α ∧ β ∈ C.

The period map

H1,0(X,C) ∋ ϑ 7→
∫
c

ϑ ∈ C,

where c ∈ H1(X,Z), defines the canonical inclusion of the lattice H1(X,Z) into the
vector space H1,0(X,C)∨, which is the dual space of H1,0(X,C), and defines
the Albanese variety

Alb(X) = H1,0(X,C)∨/H1(X,Z).

Using the Dolbeault isomorphism and the exponential exact sequence of sheaves
on X, we have, for the Picard variety of line bundles of degree 0 on X,

Pic0(X) = H0,1(X,C)/H1(X,Z).

Thus, the holomorphic tangent space to Pic0(X) can be identified with the vector
space H0,1(X,C).

However, Theorem 1 allows us to describe the tangent space to the Picard variety
in purely algebro-geometric terms. Namely, the following simple result holds.

Proposition 1. Each non-special effective divisor D of degree g on a Riemann
surface X defines an isomorphism

H0,1(X,C) ≃ Ω(2nd)(2D).

Proof. It follows from assertion (iii) of Theorem 1 that the mapping

H0,1(X,C) ∋ β 7→ ψ(β) =

g∑
i=1

(ϑi, β)τi ∈ Ω(2nd)(2D)

satisfies
(ϑ, β) = ωX(ϑ, ψ(β))

for any ϑ ∈ H0(X,KX), and is an isomorphism. This proves the proposition.

By identifying H1,0(X,C)∨ with Ω(2nd)(2D), we get an inclusion of the lattice
H1(X,Z) into the vector space Ω(2nd)(2D), which is defined as follows. Let θc be
the (0, 1)-component of the Poincaré dual of a cycle c ∈ H1(X,Z), so that∫

c

ϑ =

∫
X

ϑ ∧ θc = (ϑ, θc) for all ϑ ∈ H1,0(X,C).
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Hence

H1(X,Z) ∋ c 7→ τc = ψ(θc) =

g∑
i=1

∫
c

ϑi · τi ∈ Ω(2nd)(2D), (4.2)

and, therefore,
Alb(X) = Ω(2nd)(2D)/H1(X,Z). (4.3)

Thus, by choosing a non-special effective divisor D of degree g one can identify the
holomorphic tangent spaces to the manifolds

Alb(X) ≃ Pic0(X) ≃ Jac(X)

with vector space Ω(2nd)(2D) of the differentials of the second kind with poles
in D. Correspondingly, the holomorphic cotangent space is naturally identified
with the vector space of H1,0(X,C) of differentials of the first kind, and the pair-
ing with Ω(2nd)(2D) is given by the symplectic form ωX .

§ 5. The Baker–Akhiezer function

Given a fixed non-special effective divisor D0 = Q1 + · · ·+Qg of degree g on X,
let {ϑi}gi=1 be the basis of H0(X,KX) from Theorem 1 specialized to the divisorD0.
Consider the Abel–Jacobi map

X(g) ∋ D → µ(g)(D) ∈ Jac(X),

where µ(g) is the Abel sum: for the varying divisor D = P1 + · · ·+ Pg,

µ(g)(D) =

( g∑
i=1

∫ Pi

Qi

ϑ1, . . . ,

g∑
i=1

∫ Pi

Qi

ϑg

)
. (5.1)

We choose local coordinates at the points Pi and put zi = z(Pi). It follows
from (5.1) that 1-forms dzi on Jac(X) at the base point µg(D0) correspond to the
differentials ϑi, and the vector fields ∂/∂zi correspond to the differentials of the sec-
ond kind τi from Theorem 1. If divisor D is also non-special, it follows from
the group law on the Jacobian and Theorem 1 that dzi and ∂/∂zi at a point
µ(g)(D) ∈ Jac(X) are given by the symplectic basis of Ω(2nd) ∩ H0(X,KX + 2D)
from Theorem 1.

Equivalently, these vector fields on Jac(X) can be described using the formalism
of Lax equations on algebraic curves, developed by the first author in [5] and [6].
The main ingredients in [5] and [6] are stable vector bundles of rank r and degree rg,
Lax operators, certain meromorphic r × r matrix-valued 1-forms L(z) dz on a Rie-
mann surface X, and r × r meromorphic matrix-valued functions M(z).

Specialization to the Jacobian corresponds to the case r = 1 and substantially
simplifies construction in [5] and [6]. Namely, the meromorphic 1-forms L(z) dz
become differentials of the first kind ϑ ∈ H0(X,KX), while analogs of the mero-
morphic functions M(z) are defined as follows.

Consider the vector space

LD+D0 = {f ∈ M : (f) +D +D0 ⩾ 0}.
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It follows from the Riemann–Roch theorem that dimC LD+D0
= g+1. Thus for any

fixed choice of principal parts of f at the points of D0, not all of them are equal to
zero, there is a unique, up to an inessential additive constant, function f ∈ LD+D0

satisfying
f(z) =

αi

z − zi
+O(1), zi = z(Pi), (5.2)

at all points of the divisor D = P1 + · · ·+ Pg. Functions f , parametrized by their
fixed principal parts at D0, play the role of meromorphic functions M(z) in case
r = 1; coefficients αi depend on the principal parts at D0.

We have a unique decomposition

df = τ − τ0,

where τ ∈ Ω(2nd)(2D) (see Remark 2) and (τ0)+2D0 ⩾ 0. By the residue theorem,

−
g∑

i=1

Res
Pi

(fϑ) = ωX(ϑ, τ) = ωX(ϑ, τ0), ϑ ∈ H0(X,KX),

and so the pairing (2.22) in [5], as given by the Krichever–Phong form, coincides
with the pairing given by the symplectic form ωX .

A choice of a symplectic basis of

Ω(2nd) ∩H0(X,KX + 2D)

establishes the correspondence

f 7→ Lf = −
g∑

i=1

αi
∂

∂zi

between the rational functions f ∈ LD+D0
and the vector fields on Jac(X). Along

the integral curve D(t) = P1(t) + · · ·+ Pg(t) of Lf , where D(0) = D, we have

żi(t) = −αi(t), i = 1, . . . , g, (5.3)

where the dot stands for the t derivative. If X is a hyperelliptic curve, equa-
tions (5.3) are the classical Dubrovin equations arising in the theory of finite-gap
integration for the Korteweg–de Vries equation [7], written in terms of the Abel
transform. Using the Dubrovin equations, we see that, along the integral curve,
equations (5.2) take the form

ft(z) = − żi(t)

z − zi(t)
+O(1), i = 1, . . . , g. (5.4)

Thus integrating and introducing

Ψ(z) = exp

{∫ T

0

ft(z) dt

}
,

we see from (5.4) that Ψ is a meromorphic function on X \ D0 with simple poles
only at D, simple zeros only at D(T ), and essential singularities at D0.
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The function Ψ is nothing but the celebrated Baker–Akhiezer function, which
was introduced by the first author in [8].

We leave it to the interested reader to describe by explicit formulas this connec-
tion between algebraic de Rham theorem and the integrable systems.

Bibliography

[1] W.V.D. Hodge and M. F. Atiyah, “Integrals of the second kind on an algebraic
variety”, Ann. of Math. (2) 62 (1955), 56–91.

[2] A. Grothendieck, “On the de Rham cohomology of algebraic varieties”, Inst. Hautes
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